
AD-A259 122

AFIT/GCE/ENG/92D-03

DTIC
S ELECTE D

S JAN I 1 1993j D
C

A VHDL Interpreter for Model-Based Diagnoses

THESIS

David Robert Griffin

Captain, USAF

AFIT/GCE/ENG/92D-03

93-00088

Approved for public release; distribution unlimited

AFIT/GCE/ENG/92D-03

A VHDL Interpreter for Model-Based Diagnoses

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

DTIC 2•1.i .'S2?PLCTED 5

David Robert Griffin, B.S.E.E.

Captain, USAF Acesstm Frop

December, 1992 u&IAZISoa I 0

By
Distrl bdt l.n/
AvellabliLty Codes

Approved for public release; distribution unlimited iAvalI ,ind/or
Dist t P(cial

Preface

The program used in this research was named after Susan Calvin, a fictional character created

by Isaac Asimov. Calvin was the head robot-psychologist of U.S. Robotics and Mechanical Men. In

several of Asimov's stories, Calvin diagnosed the robot's failures using her knowledge of the rules

of robotics and the symptoms that the robots displayed.

I would like to thank the members of my thesis committee for the help they gave during my

research at the Air Force Institute of Technology. I would especially like to thank Major Gregory

Gunsch, who helped me through many rough areas. I would also like to thank my parents, Charles

and Bobbie Griffin, who kept my spirits up during these last 18 months. Finally, I would like to

thank Chesapeake and Taflina, who coiled their furry tails around my keyboard during long sessions

with the computer.

David Robert Griffin

ii

Table of Contents

Page

Preface ... ii

Table of Contents iii

List of Figures vii

Abstract ix

I. Introduction 1

1.1 Background 1

1.1.1 Model-Based Diagnostics 1

1.1.2 VHDL 3

1.2 Problem .. 4

1.3 Scope 4

1.4 Approach 5

1.4.1 VHDL Parser 5

1.4.2 VHDL Simulator 5

1.4.3 Diagnostic Routines 6

1.4.4 Selection of Test Circuits 6

1.5 Thesis Overview. 6

II. Literature Review 8

2.1 Introduction 8

2.2 Reasoning from First Principles 8

2.3 Assumption-based Truth Maintenance System 10

2.4 Full Consistency Algorithm 11

2.5 Model-Based Reasoning in the Detection of Satellite Anomalies 13

2.6 Reiter's Algorithm with Enhancements 17

ill

Page

2.7 Abductive Diagnostic Reasoning 19

2.8 Modeling Digital Circuits for Troubleshooting 20

2.9 Summary 21

III. Implementation 22

3.1 Overview 22

3.1.1 Introduction 22

3.1.2 The VHDL Language 22

3.1.3 Diagnose Algorithm 23

3.2 The Calvin Diagnostic System 25

3.2.1 VHDL Parser 28

3.2.2 VHDL Simulator 32

3.2.3 Diagnostic Routines 33

3.3 Implementation .. 34

3.3.1 Selection of a Programming Language 34

3.3.2 Implementation Details 39

3.3.3 VHDL Parser 40

3.3.4 VHDL Simulator 46

3.3.5 Diagnostic Routine 55

3.4 Summary 58

IV. Results 59

4.1 Testing Calvin 59

4.1.1 Running Calvin 60

4.2 Improvements ... 67

4.2.1 Improving the Hypothesis Generator 67

4.2.2 Probing 67

4.2.3 Extending the VHDL language 68

iv

Page

4.2.4 Interfacing with an Expert System 69

4.3 Summary 69

V. Observations and Recommendations 70

5.1 Review 70

5.2 Accomplishments ... 70

5.3 Recommendations 71

5.4 Summary 72

Appendix A. Supported VHDL Grammar 73

Appendix B. VHDL Source Code 77

B.1 Full-Adder 77

B.2 Two Operation ALU 80

B.3 Two Operation ALU with Probes 84

B.4 Four-bit Adder 88

B.5 Five-bit 2's Compliment ALU 92

Appendix C. FLEX modifications 96

Appendix D. Compiler-compiler Source Code 97

D.1 Overview 97

D.2 UV 97

D.3 UV.LEX .. 162

Appendix E. Parser Source Code 170

E.1 Overview 170

E.2 ARCH.H 170

E.3 ARCH.CPP 172

E.4 ASSOC.H 175

E.5 ASSOC.CPP 177

v

Page

E.6 CO M P.H . 179

E.7 COM P.CPP 181

E.8 COMPJN.H 183

E.9 COM PJN.CPP 185

E.10 MISC.CPP .. 188

E.11 ENTITY .H 189

E.12 ENTITY.CPP 191

E.13 GENERATE.H .. 193

E.14 GENERATE.CPP 194

E.15 ID ENT .H . 198

E.16 IDENT.CPP 200

E.17 M CODE.H 203

E.18 MCODES.CPP 205

E.19 M ISC.H 209

E.20 MISC.CPP .. 210

E.21 PO RT.H . 211

E.22 PORT.CPP 213

E.23 PORTMAP.H 216

E.24 PORTMAP.CPP 218

E.25 PROCESS.H 220

E.26 PROCESS.CPP 222

E.27 SIG NAL.H 228

E.28 SIGNALP.CPP .. 230

Appendix F. Simulator/Diagnostic Source Code •........... 232

F.1 O verview . 232

F.2 AR.HPP ... 233

F.3 BEHAVE.HPP 235

vi

Page

F.4 BEHAVE.CPP 237

F.5 BLOCK.HPP ... 242

F.6 BLOCK.CPP 243

F.7 CALVIN.CPP 246

F.8 CODE.HPP 253

F.9 CODE.CPP 254

F.10 COM SEN.HPP 257

F.11 COMSEN.CPP 258

F.12 INT.HPP ... 260

F.13 M AIN.CPP 261

F.14 M CODE.HPP 265

F.15 M CODE.CPP 266

F.16 SIGNAL.HPP....................................271

F.17 SIGNAL.CPP 273

F.18 STAT.HPP 276

F.19 STAT .CPP 277

F.20 TH ESIS.H 279

F.21 VHDL.HPP 281

F.22 VHDL.CPP 282

Appendix G. Verification of Example VHDL Source Code 286

G.1 Introduction ... 286

G.2 Zycad Source Files 287

G .2.1 Full-Adder 287

G.2.2 ALU without Probes 290

G.2.3 ALU with Probes 294

G .2.4 Four-Bit Adder 298

G .3 Zycad Results 303

vii

Page

G.3.1 FULLADD.VHZ 303

G.3.2 ALU.VHZ (without Probes) 305

G.3.3 ALU1.VHZ (with Probes) 307

G.3.4 4Add.VHZ 309

Bibliography . 311

V ita . 312

viii

List of Figures

Figure Page

1. Behavioral Description of an Adder Module 9

2. Dries' Diagnose Algorithm 16

3. Dries' Reasoner Algorithm 25

4. Calvin's Diagnostic Algorithm 26

5. The Calvin System 27

6. Calvin Initialization 27

7. First Sensor Check 28

8. Calvin's Diagnostic Algorithm 29

9. Entity Declaration for 7404 Type Inverter 30

10. Architecture Body for 74L04 Inverter 30

11. Architecture Body for 74S04 Inverter 31

12. Configuration for Structural of Decode 31

13. VHDL Simulator Pseudo-code 32

14. Full-adder Schematic 40

15. OR-gate Entity Description 42

16. FLEX VHDL Limitations .. 42

17. Entity Hierarchy 44

18. Architecture Hierarchy 45

19. Block Diagram of VHDL Simulator 47

20. Data Fields for SignalRecord Object 50

21. Functions for SignalRecord Object 50

22. Data Fields for Behave Object 51

23. Functions for Behave Object 52

24. Data Fields for Block Object 53

25. Functions for Block Object ... 53

ix

Figure Page

26. Data Fields for Code Object 53

27. Functions for Code Object 54

28. MCode Op Codes 54

29. Functions for Code Object 55

30. Calvin's Diagnostic Algorithm 56

31. Single Bit Full-Adder Schematic 60

32. ALU Schematic 61

33. Four Bit Adder Schematic 62

34. Test Data for FULLADD.VHD 65

35. Faults Found in FULLADD.VHD With 1082's Output Tied High 65

36. Test Data for ALUVHD 66

37. Faults Found in ALU.VHD With 1601's Output Tied Low 66

38. Test Data for ALU.VHD with Sensors 67

39. Faults Found in ALU.VHD With Probes 67

x

AFIT/GCE/ENG/92D-03

Abstract

Model-based reasoning permits diagnostic applications to be written without waiting for

someone to become an "expert" of the system. For model-based diagnostics, there must be a

model to reason from. This thesis explores using a VHDL description of the system as ti-at model.

A system based around a VHDL interpreter was written specifically for a model-based diagnoýiLic

algorithm. Currevrly, the diagnostic system uses an algorithm by Dries. This algorithm was derived

from Scarl's Full Consistency Algorithm. The system was designed to be modular so that different

diagnostic techniques could be implemented. It is divided into three parts: a VHDL parser, a

VHDL interpreter, and a set of routines to implement Dries' Diagnose algorithm. The system can

find stuck-at faults on combinatorial digital circuits.

xi

A VHDL Interpreter for Model-Based Diagnoses

L Introduction

1.1 Background

1.1.1 Model-Based Diagnostics Several efforts at diagnosis using artificial intelligence have

been based around production systems. When the production system is questioned about areas

that it has been programmed, the system can give an answer. However, production systems have

several limitations. The first is the expert: there must be someone who knows how the unit being

diagnosed works. This person must be located, and a knowledge engineer must get the knowledge

of the unit being diagnosed. For new products, there may not even be an expert. Even after

the expert is found, the expert may not be able to explain his knowledge in enough detail for the

knowledge engineer to code into the production system.

Assuming the knowledge engineer locates the expert, and that the knowledge engineer can

translate the expert's knowledge into the rules for the production system, that knowledge still

has limitations. If the production system is presented with a problem for which it has not been

implicitly or explicitly programmed, it is unable to give an answer. Since the production system

lacks deep knowledge of the unit being diagnosed, the production system cannot reason beyond

the symptoms it was programmed to recognize. With no knowledge on how the system works, the

production system cannot reason beyond the rules that are programmed.

Another problem with production systems is their rigidity. Once the production system has

been programmed to diagnose one kind of unit, the prcduction system can only diagnose that one

type of unit. If modifications are made, or if the unit is redesigned, the production system may not

work for the new model. Sometimes the production system can be updated, but this could require

re-consulting the human expert on the system.

Model-based reasoning attempts to overcome the limitations of production systems by at-

".empting to "understand" how the unit being diagnosed works. By comparing the model with

the faulty unit, and by knowing relationships between the components of the unit, model-based

reasoning attempts to find out which component or components are at fault. Production systems

attempt to find the faulty part by checking programmed knowledge that ties symptoms to specific

problems. Model-based reasoning uses knowledge about the interconnections of the parts, as well

as the knowledge on how each part is supposed to work, to come up with a diagnosis. Since the

model-based reasoning system uses a model of the unit being tested, there is no need to consult an

expert about every possible fault that can happen.

Compared to diagnostic systems based on production systems, model-based reasoning systems

are a recent development. At AFIT, there have been a few thesis efforts dealing with model-based

reasoning. In 1990, Kenneth Cohen described a method for diagnosing electronic modules, and

implemented an assumption-based truth maintenance system. This-is one of the components needed

in a model-based diagnostic system. Cohen's method is described in greater detail in section 2.3.

(1)

Also during 1990, Flight Lieutenant Ralph Dries developed a system for detecting anomalies

in a satellite's pitch and velocity control subsystems. A model of the satellite's subsystems was

modeled in Scheme/SCOOPS. The- diagnostic system used model-based reasoning to find faults

by comparing this model with a simulation of the real system. Dries' approach is discussed in

section 2.5.(6)

In 1988, Captain James Skinner used a combination of a production system and a model-

based system to diagnose the Dual Miniature Inertial Navigation system. In his Blended Diagnostic

System (BDS), the system uses production system techniques to try to find the fault. If unsuc-

2

cessful, the BDS tries deep model-based reasoning on the sub-unit that appears to be at fault.

(14)

Outside AFIT there have also been several efforts dealing with diagnostic systems based

on model-based reasoning. These include approaches based on Reiter's Algorithm and abductive

reasoning, described in sections 2.6 and 2.7. However, there has not been much done on describing

the model for the reasoning system.

1.1.2 VHDL VHDL (VHSIC Hardware Description Language) is a hardware description

language for designing Very High Speed Integrated Circuit (VHSIC) chips. That is, VHDL is

a software system that simulates a hardware system. A designer can use VHDL to specify the

operation of the VHSIC circuits. Once the designer has the overall behavior of the circuit specified,

the individual components can be broken down into a more detailed design. This can go all the

way down to the individual gate level. As each subcomponent is designed, its behavior can be

simulated and matched against the specified behavior.

VHDL uses three main models: a timing model, a structural model, and a behavior model.

A VHDL system simulates each component in parallel. The timing model allows the VHDL system

to simulate each component in operating in parallel on non-parallel machines. The timing model

is event driven: Each process (component) schedules the transactions. The timing model allows

VHDL simulations to give the same results on different machines.

The structural model decomposes the complete system being simulated into various sub-

systems. This creates a hierarchy of subsystems, where simple subsystems are connected into

higher-level subsystems. Ultimately, the higher level subsystems are connected to form the com-

plete system. Each subcomponent is the equivalent of a "black box," each with a specified set of

inputs and outputs.

3

The behavioral model describes how each subsystem works. This is one of the most complex

parts of the language. The behavioral description can be as simple as single operation, or can be

complex, with looping and conditional operations.

VHDL is a powerful language for hardware description. Although it is primarily used for

digital design, VHDL has analog functions that should allow it to simulate non-digital systems.

VHDL has been standardized by the IEEE (IEEE-1076). It is also accepted by the U.S. Government

as a standard for VHSIC design(5:4).

A model-based reasoning system requires a model. Determining the model of the system to

be tested can be a difficult task. This research explored using VHDL for specifying the model.

1.2 Problem

One of the problems of model-based diagnostics is creating a model of the system to be tested.

This research effort is use a VHDL description of a circuit as the model. This avoids the need to

create an additional model for the diagnostic system.

1.3 Scope

The goal of this research was to design and implement a diagnostic system, named Calvin,

that used VHDL to describe the test system. Calvin was designed so that it can be extended to

handle diagnostic algorithms.

The following limitations applied to this research:

"* Tested systems were feed-forward combinatorial digital circuits.

"* A subset of the VHDL language was implemented. The subset was enough to describe the

above circuits.

"* The VHDL description of the circuits accurately describe the operation of the circuit.

4

"* Time-sensitive bebavior, such as memory, was not explored.

"* Components were composed of only lower-level subcomponents, or boolean algebra descrip-

tions.

"* Only the following faults were simulated:

- Output stuck high

- Output stuck low

- Input stuck high

- Input stuck low.

"* If an input was stuck high or low, it was assumed to be disconnected from the rest of the

system.

"* The tested system had at most one fault.

1.4 Approach

There were three main areas in this research effort: Parsing the VHDL language, simulating

the circuit, and interfacing a diagnostic method to Calvin. There also must be some means for

testing Calvin.

1.4.1 VHDL Parser The parser took an input file and represented it internally. A VHDL

grammar written for the GNU Bison compiler-compiler was used as the skeleton for the parser.

This implementation is described in Chapter III. Only a subset of the VHDL language was used

for Calvin; unimplemented VHDL constructs were ignored.

Objective: Be able to read and parse the VHDL source code files for the test circuits.

1.4.2 VHDL Simulator To perform model-based reasoning, there must be some way to

exercise the model. In this research effort, VHDL was the model; therefore, there had to be a way

5

to simulate the VHDL source code. Although there are already VHDL simulators in existence, this

system was designed to allow easy interfacing to diagnostic routines.

VHDL is a complex language; a full implementation of the language is well beyond the scope

of this research. A description of the VHDL subset is in Appendix A. Chapter III describes the

implementation of the simulator.

Objective: Be able to simulate test circuits and generate expected values of the VHDL signals.

1.4.3 Diagnostic Routines To perform the diagnosis on the test circuits, a set of routines was

interfaced with the VHDL simulator. The goal was to make both the simulator and the diagnosis

routines loosely coupled. Chapter II contains previous research into model-based diagnosis.

The implementation of the diagnostic routines is discussed in Chapter III, along with a

description of how they were integrated with the VHDL portion of Calvin. Chapter IV contains

extensions that were explored, but not implemented as of this time.

Objective: Select and implement a model-based diagnostic strategy, and interface it with a

VHDL simulator.

1.4.4 Selection of Test Circuits To test Calvin, there needed to be a set of sample circuits.

Since this thesis investigation was implementing a subset of the source language, circuits were

selected that only used the subset. These circuits are discussed in Chapter IV.

Objectives: Create a sample of test circuits for Calvin to analyze.

1.5 Thesis Overview

The next chapter reviews some model-based diagnostic methods that have been used by other

researchers, including past AFIT thesis efforts. Chapter III describes the implementation of the

VHDL parser, simulator, and diagnostic routines. The results of the implementation of Calvin

are discussed in Chapter IV, along with a discussion of ways to enhance the diagnostic routines.

6

Finally, Chapter V will state the conclusions found from this research, along with recommendations

for future efforts.

7

I. Literature Review

2.1 Introduction

There are many different ways for performing model-based diagnostics. This chapter reviews

algorithms that previous researchers developed. Included are descriptions of model-based research

done by past students of the Air Force Institute of Technology. This chapter concludes with a

review of some considerations that development of a model must address.

2.2 Reasoning from First Principles

One method of model-based reasoning was developed by Randall Davis in 1984. In it he

discussed problems with previous efforts at troubleshooting systems. Davis proposed to solve the

problems by developing a system that reasons from first principles, using knowledge of the structure

and behavior of the system (4:347).

To reason about structure and behavior requires ways of representing both. Davis based his

structure description on three ideas: modules, ports, and terminals (4:352). Modules were the black

boxes that made up the system. Information flowed in and out of the modules through ports.

Each port had two or more terminals: one on the outside of the module, and one or more on the

inside. Modules were connected by superimposing their terminals together. There were no separate

entities for dealing with wires; if a wire was explicitly modeled, it was simply another module. The

module descriptions were hierarchical. A module may be decomposed into submodules.

The behavior of the system being tested also must be modeled. To support Davis' technique,

the behavior of the modules was described by a combination of simulation rules and inference rules.

The simulation rules described the output of the module as a function of its inputs. Inference rules

inferred the possible values of one input as a function of the rest of the module's inputs and its

output. Simulation rules represented the flow of behavior, while inference rules represented the

8

to get sum from (input-1 input-2) do (+ input-1 input-2)
to get input-1 from (sum input-2) do (- sum input-2)
to get input-2 from (sum input-i) do (- sum input-i)

Figure 1. Behavioral Description of an Adder Module
(4:357)

flow of inference (4:358). An example of a behavioral description of an adder module is shown as

Figure 1. The first line is the simulation rule. The other two are inference rules.

Davis described the traditional approach to troubleshooting as a theory of test generation,

not diagnosis (4:360). The test generation approach was to hypothesize possible faults, and then

determine a set of input values that would logically detect that fault. This approach did not

provide any insight on determining which component to consider next. The traditional approach

also required all faults to be explicitly enumerated. Other faults, such as those caused by solder

bridging two points in the circuit, could not be diagnosed.

To avoid the problems with past techniques, Davis proposed the use of discrepancy detection.

Instead of hypothesizing faults, this technique looked for observed values that were different from

the simulated values. Misbehavior was then defined as anything that wasn't correct (4:362). A

dependency network contained all components that could influence the incorrect output. The

components in this network were the suspects that needed to be checked. Each component was

checked by seeing if there was any assignment of values to its ports that could produce the observed

state of the entire system. Since to do this required that the behavior of the suspected component

to be temporarily ignored, Davis called this procedure constraint suspension. If a consistent set

of values could be assigned to all the ports in the system, the component was kept as a possible

suspect. However, if there was no way to assign values that were consistent with the known outputs,

the suspect component alone could not cause the observed behavior (4:364).

9

2.3 Assumption-based Truth Maintenance System

In 1990, AFIT student Kenneth Cohen developed a model-based reasoning system that was

based on Davis' reasoning from first principles. In his thesis, Kenneth Cohen created a model-

based reasoning system that consisted of three parts: a model-maker module, a diagnostic engine

module, and a truth maintenance system module. The model-maker module was used to model

the system to be diagnosed. The model-maker had to be able to generate "correct" behavior for

the system. The diagnostic engine module compared actual observations with those generated by

the model-maker module. If the diagnostic engine detected a discrepancy, the diagnostic engine

attempted to find the cause of the problem. Using constraint suspension, the diagnostic engine

tested sets of components to see if a set might cause the observed symptoms. (1:17-27)

The main thrust of Cohen's thesis was the truth maintenance system module, called the

Assumption-based Truth Maintenance System (ATMS). ATMS was a method for keeping track of

assumptions for a model-based diagnostic system. It had three roles: it "remembered" previously

made inferences, it allowed base assumptions to be made, and it maintained an environment free

of contradictions. (1:30)

By remembering inferences, ATMS reduced computation. If a component's value had been

calculated once, that value would not have to be recomputed for the same inputs (1:30). The

second role was to allow base assumptions to be made. This allowed other beliefs to be reasoned

(1:30). ATMS also maintained contradiction-free environments. Assumptions were usually of the

form "if there is no reason to believe -'P then believe P" (1:31). ATMS retracted any assumptions

that conflicted.

Since Cohen was concentrating on the ATMS, he did not implement the model-maker module.

Instead, the model of the test system was hard-coded in Lisp. (1:36)

10

2.4 Full Consistency Algorithm

A different approach to model-based reasoning was developed by Scarl, Jamieson, and De-

laune. Scarl's paper described a prototype system for monitoring a liquid-oxygen expert system.

The diagnostic system, called LES, determined faults from sensor data using knowledge of structure

and function of the liquid oxygen system. (13:360-361)

LES had to have a model of the system that was to be tested. This model was a network of

objects, each representing a subcomponent of the system that was to be tested. An object descrip-

tion contained the type of object. Two types of objects,commands and sensors, contain measured

or assigned values and tolerances. The LES algorithm also required three other descriptors: the

source, the source-path, and the status. The source pointed to the source of this object's value.

The source-path determined if this object was connected to the object specified by the source. This

value was a boolean. For digital objects, these descriptors were enough to describe the object. If

the object was an analog object, a status field was required to determine the state of the object

when the source-path field was on. (13:361-362)

The fields in the object's descriptors contained expressions that determined the value of the

object. These expressions contained the names of other objects in the system being tested. When

calculating the value of the object, the names of other objects were replaced with the value of the

other object that was named. (13:362)

Objects were divided into three categories: commands, components, and sensors. The com-

mands entered values into the system. Components took values at their input, and generated an

output value. Sensors only measured a value. They could not modify any other object in the sys-

tem. Information in the model only flowed in one direction, from outputs of objects into the inputs

of other objects. Each object was assumed to have only one output, which could be connected to

the inputs of several objects. (13:362)

11

The LES tested for faults whenever a command or sensor value changed. When a sensor

reported a value, it was checked by computing its expected value. LES did this by evaluating the

source-path or status expressions. Since these expressions contained the names of other objects,

these were also evaluated. The objects were recursively evaluated until the values stored in the

command objects were reached. If the observed value for the sensor was within the range of the

calculated value for that sensor, the sensor was labeled as consistent. If the observed and calculated

values did not match, this sensor was labeled discrepant, and LES invoked the diagnoser. (13:364)

When a command value was changed, all sensors affected by this command were checked.

The LES compared observed values with computed values, and were labeled accordingly. The first

sensor that didn't match its calculated value caused the diagnoser to be invoked. (13:364)

During diagnosis, objects were labeled innocent, culprits, or suspect. Innocent objects were

those objects that could not cause the faulty value of the sensor. Culprits were those objects which

LES had decided could cause the fault sensor value. If an object was not innocent or a culprit, it

was labeled a suspect. The sensor that didn't match its calculated value was labeled the Original

Discrepancy, or OD. This sensor also could be a culprit, a suspect, or innocent. (13:362)

Scarl's Full Consistency Algorithm for finding possible faults is as follows:

1. Pick a system object and label it as a suspect. Only objects that are upstream from the OD

are considered. LES picks suspect objects by keeping track of objects visited while calculating

the expected value of the OD. Since the sensor itself may be malfunctioning, it also will be

picked as a suspect.

2. Hypothesize a faulty state for the suspect object. Since the correct value of the object can

be calculated, any other value for the object represents a faulty state. The faulty state is not

picked randomly. Instead, the expressions for source-path or status are inverted. Fault states

are determined based on these inverted expressions.

12

3. Assume the faulty state for the object. Simulate the system and determine values for all 'he

sensors.

4. Compare the simulated values with those of the actual system. If the simulated values are

consistent with those actually measured, the hypothesized fault is one possible explanation of

the original faulty OD. If the simulated values are not consistent with the measured values,

the hypothesized fault is ruled out.

5. If the simulated and measured values are not consistent, and there are more possible faults,

loop back to step 2 and hypothesize a different fault. If there are no more possible faults with

the object, the object is labeled innocent.

(13:364)

This algorithm requires several assumptions. The system must not have any feedback loops.

Only one fault may occur at a time. LES could handle multiple failures, but only if each failure

could be diagnosed before the next one occurred. The equations that describe the objects contained

wild card values. LES used these to represent indeterminate states. These were used to switch

out objects LES had determined to be faulty. The algorithm also assumed that the sensor polling

cycle was shorter than the length of the faulLy behavior. LES must be able to determine the faulty

object before the faulty behavior changed. All objects in the system being tested could only have

one output. Those objects that had more than one output were decomposed into sub-objects, each

containing one output. Uncertainty was handled by using ranges. Tolerances were propagated

backward as a range of possible values. An overlapping range would match an expected value to a

measured value. (13:364)

2.5 Model-Based Reasoning in the Detection of Satellite Anomalies

Flight Lieutenant Dries used Scarl's algorithm to develop a system for monitoring an Atti-

tude and Velocity Control Subsystem (AVCS) of a geo-stationary satellite. Dries modified Scarl's

13

algorithm so that the diagnostic system did not have to invert the description of a component.

Instead, Dries included in the behavior description of the component a list of possible faults. For

each fault, the behavior description was modified so that the fault can be simulated.

Dries determined several characteristics of the language he would use to write the diagnostic

system. Because the system model would be written in the language, and the model consisted of a

network of objects, an object-oriented language would be required (6:72-73). Other considerat'ons

include a commonly used language that would produce efficient code. The language also should run

or. - personal computer. This would reduce development cost, sincc PC's are relatively inexpensive

and are readily available (6:73). Languages he investigated include Smalltalk, Lisp with Flav.'ors,

C++ and Scheme with SCOOPS.

Originally, Dries tried to use the C++ language for the model and reasoner. Borland has a

C++ compiler that is known for its efficient code generation and convenient user interface. However,

his lack of familiarity with C, along with C's steep learning curve, prevented him from using C++.

He then turned to SCOOPS to develop his system. Dries chose Scheme for its simplicity, symbol

manipulation and fast prototyping ability (6:75). Both the model and the model-based reasoner

were written using SCOOPS, an object-oriented extension to SCHEME. He concluded that C++

probably would be a better language for the final diagnostic system because of its object-oriented

capabilities (6:75).

The components of the AVCS were modeled as SCOOPS objects. Using the object-oriented

paradigm, Dries created a hierarchy of component classes. At the top of the hierarchy was a super-

class called component. This class contained attributes that all the system objects have. These

included a name, a status, a list of objects connected to this object's inputs, a list of objects

connected to this object's output, and a state that can be transmitted to the objects in the output

list. These attributes were implemented as instvars, or instance variables, in the SCOOPS object.

14

The status instvar was the same as the status descriptor described by Scarl. The source instvar of

component corresponded to Scar's source descriptor. (6:78-79)

The individual components were instances of the component class and its subclasses. SCOOPS

automatically generates functions, known as "methods" for getting, setting, and initializing at-

tribute values. A deposit-value method propagates the value of the object to other objects in the

output-list.

Below the component class in the hierarchy was the amplifier class. Since the satellite system

was primarily analog, most of the components were of the amplifier class and its subclasses. The

amplifier class added other instvars that were needed by amplifiers. These included gain, limit and

tolerance. The amplifier class also contained a list of possible faults, such as latch-up, high/low

and zero. Dries wrote methods for this class that would simulate the operation of an amplifier,

along with possible faults states. The specific components of the AVCS system were derived from

the amplifier class. These added other instvars and modify the simulation methods. (6:80-82)

In Scarl's system, inputs arrived via command objects, while the outputs of the system were

measured by sensor objects. Dries modeled the command object by deriving its class from the

component class. Since a sensor could itself be faulty, it was modeled as a type of amplifier with a

gain of 1 and a tolerance of .0001. The sensor class also contained a list of all objects upstream of

itself. These were the possible objects that could affect this sensor. (6:94)

The pitch control channel of the AVCS was modeled by a network of instances of the various

classes. For Dries' research, two networks were set up: one to represent the model, and one to

represent the real subsystem. The SCOOPS "make-instance" instantiated each component. The

input and output lists formed the interconnections of each network. (6:95-97)

As stated previously, Dries took Scarl's Full Consistency Algorithm, and modified it for his

work. Dries' Reasoner Algorithm is described in Figure 2.

15

Find a discrepant sensor
If none found then

No fault in circuit
Else

Collect all components structurally upstream from
discrepant sensor and put into suspect list

Repeat for each suspect
Repeat for each fault hypothesis

Hypothesize a fault for the suspect
Propagate change through the model
Test all sensors for consistency
If sensors consistent then

Leave suspect in suspect list
Else

Clear hypothetical fault (not suspect)
End-repeat faults
If all faults are ruled out then

Clear suspect
End-repeat suspects
If one suspect remains then

Print out the culprit
Else

Print out the list of suspects remaining

Figure 2. Dries' Diagnose Algorithm
(6:98)

16

Because his algorithm was based on Scarl's algorithm, Dries' Reasoner algorithm was still

subject to the same assumptions and limitations of Scarl's algorithm. One problem Dries encoun-

tered was that his pitch control system was a feedback loop. Since neither algorithm would work

with a loop in the test system, the feedback loop had to be broken during the test phase (6:98).

Instead of connecting the actual objects in the networks, Dries wrote a test-loop function that took

the output of the system and injected it back into the input. When a fault was introduced into the

system, the feedback loop in the model system was broken, and the diagnostic model invoked.

Another limitation of Scarl's algorithm was that objects could not be time dependent. Dries

overcame this by modifying the time dependent objects so they were non-time dependent. Dries'

system was still able to detect faults in those modified objects. (6:35)

When Dries ran his diagnostic program, the program was able to find almost all the faulty

components he introduced. He concluded that this was a result of the model and the test system

being exactly the same (6:109). Both the model and the pitch control system were made of the

same SCOOPS objects. Dries stated that a better test of his system would be to use a more realistic

real-world simulation, but at the same time use a computer model without time dependent objects

(6:109).

2.6 Reiter's Algorithm with Enhancements

This approach is an extension of Reiter's Algorithm. Where Reiter's algorithm was applied

only to diagnosing digital circuits, this extension would cover systems that vary over time.

In Reiter's algorithm, called DIAGNOSE, a problem consisted of a set of system descriptions

(SD), a set of the system's components (called COMP), and a list of observations of the system

(OBS). A diagnosis was a subset of COMP that consists of faulty components. SD U OBS (the

description of the system, together with observations of the system) must be valid assuming all

the components of the subset were faulty, and all components not members of the subset were not

17

faulty. A conflict set was a set of components such that assuming all the components in the set are

normal is inconsistent with SD U OBS. (9:10)

The DIAGNOSE algorithm computed a set of all diagnoses by building a search tree, called

a pruned HS-tree (heuristic search tree). Nodes of this tree were labeled with a conflict set, while

the edges were set by a system component. Each node had a path label, which is the set of all

edge labels from the root to that node. The algorithm required a consistency checking module,

called TP. This module took the SD, OBS and a subset of COMP. It returned a conflict list, if one

existed. Otherwise, it returned null. (9:10)

The HS-tree was set up by calling TP, passing it the entire COMP list. The root node was set

to the returned conflict list. Then, for each element in that conflict list, a child node was created. It,

was connected to its parent node with an edge labeled by the element. The path label was then set

to be the path from the root to that node. TP was called with the COMP list minus the elements

in this path. The returned conflict list was the label for the child node. If 0 was returned, the child

node was marked as completed. When the HS-tree was completed, the set of diagnoses was the set

of all the path labels of the nodes marked completed. (9:10-11)

This paper described a way to extend Reiter's DIAGNOSE algorithm to handle time-varying

systems, as well as continuous devices. The continuous device was broken into a set of components.

Each component was described by one or more equations. It was assumed that the continuous

device can be modeled by a component-connection model (9:11). Each constraint also could be

localized to one particular component. This means that a constraint that was broken could be

traced to one faulty component. SD was then set as the qualitative restraints of the system,

and OBS as the set of qualitative states. The TP module was a constraint propagation module.

When it was called with a subset of components, all restraints are removed except those related

to the component subset. The propagator attempted to propagate the parameter values as much

as possible. If a propagation was made by using a constraint, the constraint was marked as used.

18

If an inconsistency was detected, the TP module stopped and returned a list of components that

have had one of their constraints marked. If the propagation halted with no inconsistencies, the

TP module returned the empty set. This meant that all the components passed to the module were

normal. (9:11-13)

To handle continuous devices, the DIAGNOSE algorithm was run using the initial set of

observations. The conflict sets generated would have at least one faulty component. When a new

observation was made, all the nodes marked completed were opened. The TP module was then

called on each of these nodes, this time using the new observations. This was done until all the

nodes had been processed. The final set of completed nodes became the new diagnosis set. (9:13-14)

2.7 Abductive Diagnostic Reasoning

One problem with Reiter's Algorithm was that it might not pick the most "probable" faulty

component. For example, assume a component can cause one symptom 95% of the time, and a

second symptom 5% of the time. A different component could cause the second symptom 90% of

the time, but would never show the first symptom. Reiter's algorithm would say that the only first

component was faulty, even though it was more probable that both components were faulty (8:16).

Abductive reasoning attempted to choose the most probable set of disorders.

Abductive reasoning was based on a causal network, a directed graph that describes the

problem domain. The nodes were a set of events that include disorders, symptoms, and pathological

states. The edges of the network were direct causation events. They connected an event that could

directly cause another event with no known intervening events. A problem was stated by a list of

observations, each being a node in the causal network. Scenarios were chains of causation events.

Causal explanations were scenarios that hold true for the problem's observation set. Abductive

reasoning attempts to find the causal explanation that was most probable. (8:17-18)

19

Each causal event was a given a probability when the causal network was constructed. The

probability of a scenario was the product of the casual events that make up the scenario (8:18). The

goal is to maximize the probability of a scenario that explained all observations. This became a

variation of the Steiner Problem, a NP-Complete problem (8:19). The rest of this paper described

an approach for reducing complexity to polynomial time to the number of nodes in the network.

2.8 Modeling Digital Circuits for Troubleshooting

In this paper, Hamscher discussed problems with current models used in model based reason-

ing. He described a situation where a field engineer could diagnose and fix a circuit in ten minutes

using only a few probes and swapping one chip. A model-based troubleshooting program took

an entire day, and then concluded that any of 40 chips or 400 wires could be responsible for the

problem (7:2). To overcome this problem Hamscher proposed incorporating knowledge on how the

component could fail in the circuit model. He gave eight principles for modeling digital circuits.

These are summarized here:

1. Components in the model should correspond to possible repairs. There is no point in deter-

mining which transistor in the chip is bad. If any part of the chip is bao, the whole chip will

need to be replaced. This cuts down on the processing time spent in diagnosis. (7:6)

2. Model components should simplify behavioral abstraction. The only reason to represent a

function in the model is to make the behavior prediction more efficient. If it is easier for the

diagnostic system to reason about a group of components, group the components. (7:6)

3. Component behavior should represent features easy for the troubleshooter to observe. Some

features are easier and more efficient to observe than others. (7:7)

4. Components whose behavior changes every time its inputs change should be represented in

temporally coarse terms. More powerful representations take into account the function of

the circuit over long periods of time. Hamscher gives as an example the number of mouse

20

increments per second determining the number of times an interrupt line would be asserted.

(7:7)

5. A temporally coarse description that only describes some of the component's behavior is

better than no description at all. An example would be a microprocessor chip interfaced to

the mouse. The relationship between the motion of the mouse and the interrupts lines only

holds true if the clock is running. The troubleshooting program can still use this behavior to

find faults, though the entire function of the microprocessor is not simulated. (7:7)

6. Encapsulate sequential circuits into a single component. This cuts down on the number

of behaviors that the troubleshooter must consider. The overall resulting behavior makes

reasoning about the behavior more efficient than considering the various behaviors of the

components of the circuit. (7:7)

7. If there are known likely failures in a component, represent the failure mode in the model.

This can reduce the number of different diagnoses. (7:7)

8. If a component's misbehavior is much easier to model than the correct behavior, include

the misbehavior in the component's model. If a component with complex behavior fails

completely, then any partially correct behavior can make the component a much less likely

suspect. Since a complete malfunction can usually be easily modeled, the troubleshooting

system can efficiently detect the failures if they are explicitly modeled. (7:7)

2.9 Summary

This chapter reviewed some current methods that researchers are using to perform model-

based diagnostics. One recurring problem is how to model the system. This effort will use VHDL

as a way of specifying a model. The implementation of such a system is discussed in the next

chapter.

21

III. Implementation

3.1 Overview

3.1.1 Introduction For a model-based diagnostic system, there obviously must be some way

to model the system to be diagnosed. One way of modeling the system is to use some form of

hardware description language. This thesis will use VHDL as that language.

3.1.2 The VHDL Language VHDL was created primarily for the design and verification

of large-scale integrated circuits (10:2). Its very name, VHSIC Hardware Description Language,

signifies it as a language for describing (modeling) hardware. MIL-STD 454L requires that all new

application-specific integrated circuits will have a VHDL description (5:4.5.1).

VHDL has several basic building blocks which my diagnostic system, named Calvin, must

implement. These include Entities, Architectures, Configurations, and Processes. Others will be

left for future research.

In VHDL the Entity is the most basic block in the design (10:3). The entity specifies what

objects exist in the system. They are arranged in a hierarchy, with the top entity representing the

system itself.

The Architecture describes how an entity behaves. There are two types of architectures:

Behavioral and Structural. The Behavioral architecture describes how the entity behaves in terms

of VHDL statements. The Structural architecture describes the architecture as interconnections of

entities that make up the architecture. This creates the system hierarchy.

Since an entity may have more than one architecture, there must be some way to specify

which architecture to use for the entity. VHDL uses the Configuration to bind the instances of an

entity to a specific architecture.

22

The basic simulation block of the system is described by Processes. The behavioral architec-

tures contain one or more processes to describe the operation of that architecture. All processes

are assumed to be operating in parallel.

3.1.3 Diagnose Algorithm After determining how the test system was to be modeled, the

next step was to determine if there was an error. When the diagnostic system detected an error,

the diagnostic system needed some method of determining which component of the test system

was at fault. Although there were many methods, some of which were discussed previously, this

research used a method originated by Scarl and used in a previous thesis by Dries. This algorithm

is shown in Figure 3. The method this research used had two advantages:

o No need to "invert" the VHDL source. Diagnostic methods such as those used by Davis

required a way for determining the inputs of a system, given the values of the outputs.

o Fits in with a simulator-based modeling system. Possible faults in the individual components

were determined before diagnoses. This allowed more work to be done before the actual

diagnosis.

However, there were also a few disadvantages:

"* No feedback. Neither Scarl's full consistency algorithm nor Dries' diagnose algorithm allowed

the test circuit to have any feedback. This prevented state machines from being tested. Dries

worked around this limitation by breaking the feedback loop during diagnostics.

"* Limited fault detection. The set .of faults the system will look for were predetermined before

diagnosing the test circuit. If an unforeseen fault occurred, the system could not find it.

"* Combinatorial explosion. The time needed to diagnose a system was dependent on the number

of suspects. This in turn was dependent on the depth and branching factor of the test circuit.

In an extreme case with only one sensor, every component would be suspect. This would

result in testing every hypothesis for every component in the test circuit.

23

The system's diagnostic method should be easily updated when needed. This was done by

a combination of object-oriented programming and loosely coupled modules. The algorithm was

divided into two areas: Generate and Test.

3.1.3.1 Generate Calvin first generated the various hypotheses for each component.

This was done during the parsing of the VHDL model. As an executable section of the model was

parsed, the parsed data was sent to the hypothesis generator to determine what could go wrong.

Each simulation component contained a set of instructions on how it was supposed to logically

work. This section took the correct model and generated the faulty behaviors. Although currently

this portion is only executed during parsing, it can be extended to be executed during simulation.

For this effort four common hypotheses for digital circuits were generated:

1. Input stuck high. This simulates the case where the input of a component always reads

"high."

2. Input stuck low. This is where the input always reads "low."

3. Output stuck high. This simulates an output that is always high. This may seem to be

the same as if an input connected to that output was stuck high. The difference is in this

hypothesis all inputs connected to the output will be pulled high.

4. Output stuck low. This is where the output line always reads low.

3.1.3.2 Test This portion implements Dries' Diagnose algorithm. Figure 4 describes

the algorithm used by Calvin.

After Calvin found an output that did not match its simulated value, the component attached

to that output was placed in a suspect list. Then, Calvin works upstream, placing each component

into the suspect list until the inputs were reached. Calvin did this by using the structure of the

test circuit.

24

Find a discrepant sensor
If none found then

No fault in circuit
Else

Collect all components structurally upstream from
discrepant sensor and put into suspect list

Repeat foreach suspect
Repeat for each fault hypothesis

Hypothesize a fault for the suspect
Propagate change throughout the model
Test all sensors for consistency
If sensors consistent then

Leave suspect in suspect list
Else

Clear hypothetical fault (not suspect)
End-repeat faults
If all faults are ruled out then

Clear suspect
End-repeat suspects
If one suspect remains then

Print out the culprit
Else

Print out the list of suspects remaining

Figure 3. Dries' Reasoner Algorithm
(6:98)

Calvin took each suspect from the list and tried to determine if it could cause the problem. It

went through the hypotheses that were created during the initial parsing, and simulated the fault.

The VHDL simulator was then rerun to see if that fault could account for the all the known output

values. If so, that hypothesis was kept; otherwise it was thrown out. This process was repeated for

the rest of the hypotheses and suspects.

3.2 The Calvin Diagnostic System

A diagram of the Calvin system is shown in Figure 5. There are three main units in Calvin:

the VHDL parser, the VHDL simulator, and the diagnostic routines. In Figure 5 the diagnostic

routines are in the Init, Hypothesis Generator and diagnostic blocks. The code that controls the

program flow is contained mostly in the modules CALVIN and MAIN.

25

Check sensors
Collect suspects
While more suspects

While more hypotheses
Hypothesize fault
Re-simulate
Compare all sensors with their simulated values
If consistent

Keep suspect
Else

Remove suspect
End

End
End

Figure 4. Calvin's Diagnostic Algorithm

The VHDL parser takes the source code and generates an internal representation of the circuit.

While the parser is generating this representation, the data is sent to a hypothesis generator. This

module creates code to simulate the errors that Calvin will check for during diagnosis. The simulator

takes a current representation of the circuit and its inputs and determines what the outputs should

be. This is done first to check the outputs of Calvin's model of the circuit against the measured

outputs of the circuit. The simulator is also used to re-simulate the circuit after a fault is introduced.

The diagnostic routines implement a version of Dries Diagnose algorithm. These routines call the

simulator modules as needed for re-simulation.

The Init block in Figure 5 is further broken down in Figure 6. First, Calvin initializes the

internal variables. Calvin then parses the command line to get the VHDL source file name, test

inputs and outputs file name, and commands. An example is given in section 4.1.1. The VHDL

source file is then opened and sent to the parser.

The VHDL parser takes a file containing the VHDL description of the system to be diagnosed

and generates an internal representation of the system. During this parsing, the internal represen-

26

HYPOTHESIS

GENERATOR

Prcs "Faulty" VHDL DATA
¢o•Pn s STOR

S o u r c D t D t

Simulated "aly
Val Vle

"InlutReal" •II HC uspects

Values

Figure 5. The Calvin System

iiCavnLinejopen Files 1 ' (Call -Sime)

Figure 6. Calvin Initialization

tation is handed over to a diagnostic module to generate possible faults. This is the Hypothesis

Generator shown in Figure 5.

The next step is to get the current inputs and outputs of the actual circuit (called by Scarl

commands and sensors). These are contained in the test file specified on the command line. The

input signals are set to these values. Control is given to the last block in Figure 6, First Check.

First, the VHDL simulator is called to generate the sensor values that Calvin expects for a

correctly operating circuit. Calvin then compares these values with those reported in the test file.

This is detailed in Figure 7. Calvin loops through each sensor and compares its simulated correct

behavior with that of the "real world." If all the sensors match, Calvin decides that there are no

faults and quits. Otherwise, the system calls the diagnostic routines. These routines implement

a version of Dries' Diagnose algorithm, re-simulating the circuit as necessary. This is detailed in

Figure 8. Possible suspects are collected based on which sensor does not match the simulated value.

This routine is detailed in section 3.2.3.2. The suspects are collected in a queue. While there are

27

First Check

Sensor <- 0;

Compare Sim Different Diagne
Go To Next with real

Sensor
S m

SFinished No

Faults Found.

Figure 7. First Sensor Check

still suspects, Calvin takes one off the top. Calvin then runs through the possible hypotheses for

this suspect. Each hypothesis is implemented in the simulated circuit, and the VHDL simulator

is called. The newly simulated values are compared against those in the test file. If they match,

Calvin reports that this is a possible fault in the circuit. Otherwise, Calvin rejects the hypothesis

and selects the next. Once all the hypotheses are finished, Calvin goes to the nexL suspect in the

queue. When all of the suspects are checked, Calvin quits.

S. 2.1 VHDL Parser The parser section takes as its input the name of the file that contains

the VHDL source code. Using a subset of the VHDL language, it generates a set of data structures

28

Diagnose

Queue Finished

Yes

[-Get next Suspec

No Mr

LtHypothss_ • Yes

F Select Hypo

F Call Simulator

Different Compare Same

[I jet HypoF Report Hypo

Figure 8. Calvin's Diagnostic Algorithm

29

- Entity declaration for 1/6 of 74xx04 inverter
entity 7404jnv is

port(
A: in bit;
Y: out bit

end 7404-inv;

Figure 9. Entity Declaration for 7404 Type Inverter

- Architecture body for 1/6 of 74L04 inverter
- Propagation delay determined by the average of pLH and pilL
- as given by the TTL Data Book, Vol. 2 by Texas Instruments
architecture 74LO4.Jnv of 7404_inv is
begin

process
Y <= not(A) after 33 ns;
wait on A;

end process;
end 74L04.inv;

Figure 10. Architecture Body for 74L04 Inverter

that represent the parsed source code. The grammar of the VHDL subset used in this research is

described in Appendix A.

The first part of the source code file contains entity and architecture declarations. The entity

declaration defines the components that make up a circuit, along with their interfaces. The actual

workings of the component are described by the architecture declaration. Since there can be many

ways to describe the internal workings of a component, there can exist more than one architecture

declaration for an entity declaration. For an example of multiple architectures for the same entity

consider the TTL 7404 inverter. A possible entity declaration for the gate is shown as Figure 9. The

characteristics of the gate vary depending on the technology used. An architecture body for the

74L04 inverter is shown in Figure 10. while the architecture body for a 74S04 inverter is described

in Figure 11. The parser maintains a list of currently defined entity declarations and architecture

bodies that have been declared in the source code file.

30

- Architecture body for 1/6 of 74S04 inverter
- Propagation delay determined by the average of pLH and pHL
- as given by the TTL Data Book, Vol. 2 by Texas Instruments
architecture 74SO4_inv of 7404-inv is
begin

process
Y <= not(A) after 4 ns;
wait on A;

end process;
end 74SO4_inv;

Figure 11. Architecture Body for 74S04 Inverter

configuration decode11con of decode is
for structural

for I1: inv use configuration work.invcon;
end for;

end for;
end decode_11con;

Figure 12. Configuration for Structural of Decode
(4:123)

The VHDL simulator requires a set of processes and their interconnections. The code for

the processes is generated when the parser finds process definitions within the architecture bodies.

After the code for a process has been generated, it is handed over to the diagnostic module. The

diagnostic module generates possible fault hypotheses for the process, and returns it to the parser.

The parser takes the correct behavior and the hypothesized faults, and collects them into a block

for the simulator to use.

Which architecture is used by the simulation is determined by the configuration source code.

An example configuration is shown as Figure 12. In this implementation, the parser expects a

VHDL configuration to be at the end of the source code file. When the parser has reached the end

of the source file, it returns control to the main program.

31

Initialize activation record queue
while queue not empty:

Get next time
while new time == time of next record on queue:

Compare new value of signal described by the record with the
current value. If they are equal, throw out record and loop.
If not, add record to set of signals to update.

Set value of signal to new value described by record
Collect all behavior instances whose input is connected to

this signal.
For each behavior instance collected:

Determine which process code is to be executed
Execute code, posting new signal values to the queue

Figure 13. VHDL Simulator Pseudo-code

3.2.2 VHDL Simulator The simulator is based on an Intermetrics VHDL system. This

VHDL system was described by Comeau in Chapter III of his thesis (3:41-61). The basic operation

of the simulator is described by Figure 13.

The simulator revolves around a priority queue that contains information for updating the

various signals in the simulation. These activation records contain information on which signal is

to be updated next, and how it is to be updated.

The first time the simulator is run, a routine is called which places activation records for

all the signals present in the simulation into the queue. Each is given a default value and an

update time of 0. This simulates the circuit being "switched" on for the first time. For subsequent

invocations of the simulator, the input signals to the system are placed in the queue. After the

queue is initialized, execution continues into the main loop.

The VHDL main loop first updates the system clock to the value of the top record in the

queue. Then all records that have this new time are collected. For each of these records the new

signal value is compared to the current value. If the values are different, the simulator determines

which behavior instances are connected to the signal. The signal value is then changed to its new

32

value. If they are equal, the behavior instances connected to this signal perceive no change, and do

not need to be updated.

After all the records at the new time have been processed, the simulator updates the affected

behavior instances. Since there may be many separate instances that all refer to same process code,

the simulator must first determine which process to execute. The process contains instructions on

how to simulate the process's behavior. During execution of the process, new values may be placed

on output signals. The process execution module creates a new activation record for the signal and

places it on the queue.

After all the affected behavior instances have been updated, the simulator loops until the

queue is empty. This signifies that the circuit has reached a stable state. The output values can

then be checked.

3.2.3 Diagnostic Routines The diagnostic routines are divided into four sections. While

parsing the source code, a module generates fault hypotheses for the processes. Another module

generates suspected bad components based on comparing the simulated outputs with the actual

outputs. A third section determines which hypothesis to use for the suspect. Finally, there is a

section to re-simulate the circuit and determine if the hypothesis for the suspect is valid.

This research effort used the Scarl's "Full Consistency" algorithm as modified by Dries. One

goal of this effort was to make Calvin modular enough so that the various modules could be

upgraded or replaced as needed. To do this, the diagnostic modules were written as loosely coupled

modules. There is little or no parameter passing between them, other than the values of the input

and output signals.

3.2.3.1 Hypothesis Generation Fault hypotheses are generated during the parsing of

the VHDL code. After each VHDL process is created from the source code, the parser calls the

fault hypothesis module. This takes the current process and generates possible faulty behaviors for

33

the process. The faults are predetermined by Calvin. Calvin generates faults for each output stuck

high, each output stuck low, each input stuck high, and each input stuck low. Only one fault at a

time is allowed in the circuit.

3.2.3.2 Suspect Collection Suspect components are those that can affect the reading of

the sensor that differed from the simulated circuit. This limits the suspects to those that directly

or indirectly drive the sensor. In Dries' and Scarl's algorithms, this is done by collecting each

component upstream starting from the faulty sensor. In this research this is done.with a simple

depth-first search, starting with the faulty output.

3.2.3.3 Fault Generation After the possible suspects have been identified, it is the

job of this module to "break" the test circuit. The collect suspects module creates a queue that

contains all the possible suspects that could be the cause of the fault. The fault generating module

takes the suspect at the front of the queue and causes it to break. It iterates through each fault

hypothesis generated during the parse. After the re-simulation, the outputs of the simulated faulty

circuit are again compared with those supplied from the "real world." If they match, the candidate

hypothesis is kept. If not, the candidate is rejected.

3.2.3.4 Re-simulation After a possible fault hypothesis is selected, the circuit must

be re-simulated. The fault generating module rearranges the pointers to the process code blocks,

and re-initializes the simulator variables. This allows the same VHDL simulator that generated the

results for correct operation also to be used for the simulation of the faulty circuit.

3.3 Implementation

3.3.1 Selection of a Programming Language Since I had decided on an object-oriented ap-

proach, the programming language must be able to support object-oriented programming. The

34

language must be powerful enough to accomplish the task. I must also be able to use the language.

Some criteria for the language are:

" Object Oriented

As described above, several parts of Calvin are inherently object-oriented. An object-oriented

approach also makes information hiding and modularity easier. Since the only way to access

or change the hidden information is to use explicit calls to an access function, it is easier to find

logic errors in the program. This also prevents inadvertent tampering with the information.

Certain aspects of the object-oriented paradigm were not initially thought to be necessary.

These included the concept of inheritance. It was later found that inheritance could be used

in the parser, simplifying and standardizing the data structures greatly.

"* Ease of Prototyping

Since most of the code was to be generated from scratch, several false starts were anticipated.

Code must be easily and quickly written, without having small changes requiring mussive

rewrites. Some data must be able to move through the system without having to worry

about type-casts. This feature can have some disadvantages: this type of programming can

lead to poorly-written code that may lead to recoding complications and hard-to-find bugs.

"* Convenient Development System

The language should have a complete set of development tools. Although this does not nec-

essarily mean an integrated development environment, the basic tools for editing, compiling,

running, and debugging should be present and work together smoothly. For accessibility,

some or most of the code should be able to be developed on a MS-DOS based machine.

"* Compatibility with LEX/YACC

As discussed later, a grammar for the VHDL parser was obtained from the University of

Cincinnati. This grammar was written in Bison, a GNU version of the UNIX utility YACC.

35

Bison is the GNU version of the UNIX utility YACC (Yet Another Compiler-Compiler).

These programs take a language grammar and generate C code that parses that language.

The C code is then compiled and linked with the rest of the program. The main advantage

of Bison over YACC is that it allows larger language grammars to be parsed.

Bison and YACC work with another utility, LEX. LEX takes a description of the tokens

recognized by a language, and generates C code that parses these tokens. The source files for

both LEX and Bison contain embedded C code that is inserted into the output files. This

code determines the actions that take place when certain keywords or structures have been

parsed. By using Bison and LEX with the VHDL grammar from the University of Cincinnati,

I did not have to write the actual parser. My task was limited to adding the actions to take

place one certain VHDL constructs were recognized.

The system must be able to take the output code files from Bison and LEX and link them into

the simulator/diagnostic routines. Alternatively, a separate program could be written that

would parse the VHDL source and pass the resulting information to the rest of the system

through a file. In any case, some code would have to be written using the C language (note

that this turned out to be not quite true; A GNU version of LEX, FLEX, was modified to

use C++).

* Familiarity

Last, but definitely important, the programmer must be familiar with the language. Time

spent learning a new language is time that could not be used on the research effort.

Initial candidates for the programming language were Ada, C/C++, LISP, and PC-Scheme.

A discussion of these languages considering the above criteria follows:

•Ada

36

This language is the DOD standard language for new programming efforts (2:8). Although

some claim it is an object-oriented language, there is some debate. It does not support

inheritance, but as noted, inheritance was not thought to be important in this effort. It does

have good support for modularity and information hiding, the desired object-oriented features

most needed for this effort. A main feature of Ada is enforcing type-checking. Although this

can lead to more reliable code, it can hamper prototyping efforts. The type-checking makes

it possible to catch logic errors earlier in the development process. A more serious problem

is its efficiency. Ada does run on MS-DOS platforms; however, the edit/compile/run cycles

tend to be a lot longer then those of the other languages. Ada does have methods for linking

in modules from other languages, so it should be compatible with LEX/YACC. Ada's syntax,

being based on Pascal, is not greatly different from other common programming languages.

* LISP

This language is very much associated with artificial intelligence research. In contrast to Ada,

LISP has very little type-checking. It also provides a high level of abstraction not found in

"lower-level" languages such as C. It tends to be more compact than equivalent programs in

other languages.' Features such as not having to declare variables until they are used for the

first time allow very rapid programming. Although LISP is not object-oriented by itself, the

Flavors extensions add this capability to LISP. A major problem with LISP is the size of the

language; it does not fit well on a MS-DOS platform. Programming in LISP also requires a

different mind-set than more traditional languages.

* PC-Scheme

PC-Scheme is a variation of LISP that runs on MS-DOS machines. It has the same prg-

gramming style as LISP, allowing rapid prototyping and smaller programs. It comes with a

well-integrated environment for programming in PC-Scheme. It also has hooks for integrating

outside code modules.

37

* c/c++

C is sometimes referred to as a "low-level" programming language. It is a powerful, but

dangerous language. Like machine language, C assumes the programmer knows what he is

doing, even when he doesn't. Examples include lack of bounds checking on arrays, and little

type checking on parameters. Unless care is taken, this can result in obscure bugs that can

affect areas of the code far away from the original problem. C itself is not object-oriented,

although object-oriented techniques can be used.

C++ is a superset of the C language that adds several features, such as object-oriented

structures. Although the programmer can still cause obscure bugs, C++ has several features

that tend to catch problems earlier during development. These include function prototypes

and type-safe linkage, which specify function parameter types and return values.

C/C++ is available on a wide selection of platforms, including both the Sun Sparcstations

and MS-DOS machines. The UNIX operating system includes many tools for using C-based

projects. There are also good development systems for MS-DOS platforms, such as those

by Borland and Microsoft. Another advantage is that the output of Bison and LEX are

C source code files. By using C or C++ integration of the various parts of Calvin would

be much simpler, without any concerns about cross-language interfaces. Finally, I have had

much experience in C programming, as well as some with C++.

After evaluating the languages, the initial selection was to use C++ for the simulator and C

for the parser. The simulator was the most object-oriented, and would be best written in a language

that supported such constructs. Since the output of Bison and LEX were C files, it was thought

that the supporting modules for the parser also should be written in C for ease of integration. The

diagnostic functions were rather loosely coupled to the rest of Calvin. C++ was chosen for these

functions to take advantage of the additional power and type-checking features of C++.

38

The initial configuration was a parser module separate from the rest of the system. This

would be run on a UNIX system using GNU Bison and standard UNIX LEX. The rest of Calvin

would be developed on a MS-DOS machine using the Borland C++ 3.0 development system. The

Borland environment contained both an ANSI standard C compiler and version 2.1 of C++, which

included templates (the equivalent of the Ada Generic structure)(15:33). It also came with libraries

for container classes. Familiarity with Borland products also resulted in a shallow learning curve,

allowing more time for development.

During development a copy of Bison was found for MS-DOS machines. After finding that is

was functionally equivalent to the version running on the UNIX system, the Bison code was ported

to the MS-DOS platform. A GNU version of LEX, called FLEX, was also found that would run

on MS-DOS machines. At this time, all code was ported to the MS-DOS platform, with the parser

being compiled in C and the rest of Calvin in C++. By modifying the skeleton file for Bison, the

output source files could be compiled by the Borland C++ compiler. Now, all the source files could

be compiled by one compiler into one program. By doing this, integrating the various modules

became trivial. An additional benefit was allowing C++ functionality in the parser section.

3.3.2 Implementation Details The following sections describe how Calvin was implemented.

As described previously, Calvin can be split into three main areas: the VHDL parser, the simulator,

and the diagnostic routines. Calvin was designed so that the three areas are relatively independent

of each other and can be easily expanded.

A full-adder circuit is used as an example throughout this section. Figure 14 shows a schematic

for the full-adder. This example was taken from VHDL: Hardware Description and Design (12:18-

22)

The source consists of descriptions for an OR gate, a half-adder, and the full-adder. The

VHDL source code for the full-adder is contained in Appendix B.1.

39

1051:0

SI
I1090

1080 |v• -------

1052 10115

' 1081

10,92
1053 I,

SI !!

155

Figure 14. Full-adder Schematic

3.3.3 VHDL Parser

3.3.3.1 Introduction The parser was built around a VHDL grammar written for the

Bison compiler-compiler. As the VHDL source file was parsed, several data structures were built

that represent the source code. This was done by embedding in the Bison grammar file calls to

outside modules that build the data structure as the various VHDL constructs were parsed. At

the end of the VHDL source file were configuration statements. These were handled by embedding

calls in the Bison grammar to call routines to build up the simulator objects. When the end of file

was reached, the parser surrendered control back to system.

3.3.3.2 Bison Code The University of Cincinnati VHDL grammar was for the IEEE-

1076 specification of the VHDL language, with a few modifications. These were done so that

Bison could generate a parser for the language. Bison generated a LALR(1) parser, which could

not parse the entire VHDL language as described by the IEEE specification. These modifications

are summarized in the header to the Bison code, which is in the file UV, in Appendix D.1. The

original code had three shift/reduce conflicts and three reduce/reduce conflicts. Since signal types

in Calvin were limited to type BIT, the number of shift/reduce conflicts was reduced to two and

40

reduce/ reduce conflicts to one. These modifications are documented in the part of the grammar

that parses the VHDL Type token.

As the VHDL source was parsed, an internal representation was built. As each VHDL con-

struct was recognized, the relevant information was stored in that representation. There was a

module that maintained the current information for each VHDL construct. This was kept in dy-

namic memory. When the parser recognized the start of the construct, the current information

was set to a default state. As the construct was parsed, the parser called functions that added

the newly acquired information to the current construct. After the parsing of the construct was

finished, a pointer to the finished construct was passed back, usually to a field within a higher-order

construct. Some constructs, such as signal and port lists, were passed as linked-lists.

Figure 15 shows an example entity description for an OR-gate. After the parser found the is

keyword, the grammar dictated that a port clause would follow. A call was made to port-clear() to

initialize the current port data structure. The keyword port and the "(" token were then recognized.

The parser then looked for a formal port list. This consisted of an identifier list "i11", colon token,

a direction (in or out), and a signal type (bit). These values were placed in the appropriate fields

within the port data structure. The parser then looked for the ")" and ";" tokens. At this point

the port data structure was complete. A pointer within the module tasked with constructing this

structure pointed to the memory block that contained the information. The parser then called

a function that took this pointer and placed it within the current entity data structure. This

continued until all the VHDL source had been parsed.

3.3.3.3 FLEX Code The parser generated by Bison required a module to recognize

the tokens and keywords in the source file. This module was generated by a lexical analyzer,

FLEX. FLEX was a GNU version of the standard LEX program present in most UNIX systems.

For the purposes of this research the two were equivalent. The chief advantage of FLEX was that

there was a version that runs on MS-DOS machines. A few modifications had to be made so that

41

entity i15 is
port(

ill: in bit;
i12: in bit;
i13: out bit

end;

Figure 15. OR-gate Entity Description

Identifiers Identifier must be the letter I followed by
a three digit number (1002, 1234)

Integers Sequence of digits
Reals Not permitted

Figure 16. FLEX VHDL Limitations

Borland C++ could compile the output file from FLEX. These modifications are summarized in

Appendix C.

T1 - input file to FLEX described how the tokens of the grammar were to be recognized. Also

included were the keywords and tokens for the VHDL grammar. The tokens and keywords style

for VHDL and Ada were similar. This made it possible to take a LEX file used in the CSCE663

Compiler Theory and Implementation course and modify it. This file was jointly written by Captain

Chester A. Wright and me. The additional keywords required by VHDL were added to this file.

The file is named UV.LEX, and is in Appendix D.2.

To speed development, several features of VHDL were restricted. The chief of these were

identifier names. Identifiers throughout Calvin were defined as integers. To make it easier to come

up with the handles, the VHDL identifiers were defined to be the letter 'I' followed by a three digit

number. The features restricted by the FLEX input file are summarized in Figure 16.

A complete description of the supported VHDL grammar is given in Appendix A.

3.3.3.4 Internal Data Structures As each VHDL construct was parsed, the necessary

information was recorded in the data fields of a corresponding internal data structure. As parsing

42

continued, the data structure might then be inserted into a field of a higher echelon structure. This

structure could in turn become a field in an even higher structure. At the top of the hierarchy were

two data structures: a list of entity declarations, and a list of architecture declarations. Figure 17

shows the complete hierarchy of the entity declaration, while 18 does the same for the architecture

structure. The individual modules that make up these hierarchies are in Appendix E. The names

of the modules correspond to the objects in the hierarchy.

Since this section was so tightly bound to the Bison module for the parser, it was originally

written in straight C code using an object oriented style. At the time it was originally written,

the GNU Bison was being used to generate C code. It was later ported to a MS-DOS system and

compiled with the same-C++ compiler as the rest of Calvin. Unfortunately time did not allow this

module to be rewritten in straight C++ code. This would have resulted in more consistent data

structures, resulting in more robust code that is easier to modify (and debug!).

Since an object-oriented approach was used for the data structures and associated functions,

each of them tended to have the same structure. The routines for each structure were collected into

a single module, separate from any other structure. The actual data structure itself was stored in

the heap memory. Each module contained an internal pointer that pointed to a current instance

of the structure. This structure, known as the current structure, was the one that was currently

being parsed.

Each structure had a clear routine: this initialized the internal variables and set th" internal

structure pointer to NULL. For list-type structures there was a routine to create a new object and

add it to the front of the internal list. Next, there were a set of functions that added the values to

the structure. These functions were called by the parser as the appropriate value was determined.

Sometimes these functions added pointers to other data structures; other times a value was added

to the field. After the object had been parsed, there must be some way for the outside program to

use the structure. Another function handled this task by returning the address of the current data

43

id

name

signalFlist 1 iid
comp-list type

comp-instlst - next

process
next id

port id

next number

direction

type

•iname nx

pentity

ler

e
portmap assoc-list • lf

right

next
IImOde code

prey

next

Figure 17. Entity Hierarchy

structure. Usually this was inserted into a data field of another data structure by corresponding

functions in the higher structure. Finally, there were print functions that printed out the values

of a data structure. One function displayed the current structure, while another described the one

passed by a pointer reference.

3.3.3.5 Translation to Simulator Data Structures The parser translated the internal

representation of the source code into class instances usable by the simulator when it parsed the

VHDL configuration statements. In this effort, the configuration source must come at the end of the

source file, after all the architecture and entity declarations have been parsed. As the configuration

44

id

name
signal-list _ id

comp-list type

comp-inst-lst n _next

process
next id

port id

next number

direction

type

Sname nx

entity
portmap assoc-list left

right

next
_-mcode • cd

prey

next

Figure 18. Architecture Hierarchy

45

information was parsed, Calvin generated the simulator objects. The information given in the

configuration section determined the construction of these objects.

3.3.4 VHDL Simulator

3.3.4.1 Introduction This section describes the VHDL simulator section of the Calvin.

The flow of the simulator is first described, followed by a discussion of each of the main C++ classes

used to implement the simulator.

3.3.4.2 Overall Flow The structure of the simulator is shown in Figure 19. These

functions are in the module VHDL.CPP, in sections F.21 and F.22 in Appendix F. The simulator

is built around a priority queue of activation records. Each activation record has three fields: the

name of the signal to change, the new value of the signal, and when it is to be updated. Piiority

in the queue is based on the time stamp of the activation records, with earlier times towards the

front.

The Processlow.time() function first sets the current simulation time by examining the

top activation record on the queue. All activation records with the new time are then pulled from

the queue. As each record is removed, the value of the signal specified in the record is checked

against its current value. If there is no change, the activation record is ignored. If there is a change,

the signal's value is set to the value in the activation record.

Signals are connected to objects that represent how an architecture behaves. In Calvin,

these are called Behave objects. When a signal changes value, all Behave objects connected to

that signal must be updated using update behaveo. These Behave objects are specified by the

signal's conns list. The label conns is the equivalent to the "conns" that Comeau describes for the

Intermetrics VHDL system. In the Intermetrics system, "conns" is the pointer to a list of behavior

instances for which this signal is an input (3:50). The identifiers of these objects are collected into

a set object. This is a container class defined in the Borland library that allows only one copy of

46

- ~Po s e A c tivatio nR eco rd , e u t o

Activation Record
Code Section

[roess low time BeaeIsnc g-IvI

'Time

Simulation Time Behave Instance

Process init

Figure 19. Block Diagram of VHDL Simulator

47

a member to be in the set. This keeps the simulator from updating a Behave object twice during

the same simulation time.

After all the signals with the same simulation time have been removed from the queue, the

simulator updates the Behave objects that the changed signals drive. Each Behave object references

a Block object. This object contains a set of code sections that describe how the Behave object

works. Then, according to the hypothesis generated during the parsing, the simulator takes one of

the code sections from the block and executes it.

The code section is a list of opcodes, which are discussed in more detail below. The object can

pull in current signal values through the input port list of the Behave object. Other opcodes perform

calculations. The simulator handles output signal values by posting them to the priority queue.

The MPOST opcode specifies the modified signal's name, its new value, and the propagation

delay of the block. The simulator builds an activation record from this information and inserts it

into the priority queue, completing the simulation cycle.

Since at the beginning of simulation time the queue is empty, there must be some way to

start the simulator. The process-init() function handles this by calling update.behave() for

each Behave object in the simulator. Any Behave objects that change a signal value will place

an activation record in the queue. The earliest activation record is then pulled from the queue,

starting the simulation. The simulator will then cycle until the queue is empty. This signifies that

the circuit has reached a stable state. If the circuit has feedback, it is possible to design a circuit

that will never be stable. This effort assumes only feed-forward combinatorial circuits; these will

always reach a stable state.

3.3.4.3 Microcode The simulation of the circuit's components is handled by a "mi-

crocode" interpreter. This code is in modules MCODE and CODE, in Appendix F. Instead

of generating C source code like the Intermetrics VHDL system, Calvin generates opcodes for an

interpreted language, which will be referred to in this thesis as "microcode" or "mcodes.'

48

The microcode interpreter is stack-oriented with a separate set of registers. This style was

inspired from the Hewlett-Packard line of programmable calculators, which I have used for several

years. Operands are pushed onto an internal stack, which is then used by the operators. An

auxiliary set of registers can hold values that need to be saved from change. A more complete

description of the opcodes is discussed later.

3.3.4.4 Data Structures To speed development of Calvin a "few shortcuts" were taken.

Several places within the various objects required a set of values. An attempt at using the Set

class supplied by Borland was unsuccessful, so an array was used instead. In most cases, the object

used an integer array along with an index variable that marked the next empty slot in the array.

The length of the array was defined in the header files as MAXjxxx-LEN. Since values were only

added to the array, no special garbage collection routines were needed.

As Calvin developed, the maximum array lengths were adjusted as needed. This method of

managing data collections was wasteful of memory; however, lack of memory never was a problem.

Another shortcut dealt with identifiers. Using proper software engineering practices, there

should be a separate identifier class. To speed the development of Calvin all identifiers were defined

as integers. This also simplified the internal operand stack for simulating the process code sections.

By having both identifiers and signal values defined as integers, the stack could be implemented

as a simple integer stack. An alternative would have been to create a new data object that would

be a union of identifier type and signal value that included a field determining which was which.

Implementing future data types other than BIT will require this approach.

3.3.4.5 Signal Record Class The signal object is used to connect the various processes

of the simulated circuit together. The module that defines the signal object is module SIGNAL,

in Appendix F. The signal object in the simulator is derived from the Intermetrics' signal record as

described by Comeau (3:3.10). Figure 20 describes the data fields for the signal record object. The

49

id Signal Identifier
name[] String name for signal
cval Value of signal
conns[] Behave instances connected to this signal
last-conn Last conns
driver-bi Behave instance that drives this signal

Figure 20. Data Fields for SignalRecord Object

SignalRecord Constructor
get-id Return signal identifier
print Print signal record (debugging function)
add-conns Add behave instance to conns list
get-conns Return pointers to conns list
set-cval Set signal value
get-cval Get current signal value
set-driver-bi Set driving behave instance
get-driver.bi Get driving behave instance

Figure 21. Functions for SignalRecord Object

ID field uniquely identifies the signal in the circuit. The name field is used for the user interface.

The current value of the signal is maintained by the cval field. The list of behave instances that

are driven by the signal is kept in the conns array. These instances are those that will be updated

whenever the value in cval is changed by a record being de-queued from the activation record

queue. last-conn is an index into the conns array. It points to the next available slot in that

array. Finally, driver-bi is the identifier of the behave instance that drives the signal.

A list of functions available for the SignalRecord object is in Figure 21. Like most objects, the

ID of the signal can be obtained by calling get-ido. The functions add.conns() and get-conns()

allow access to the list of Behave objects connected to the signal. The value of the signal is set

by set.cval(), and obtained by get-cval(). Access to the name of the Behave object that drives

the signal is through set-driver-bi() and get-driver-hbio. For debugging, print() was written

to display the data within the signal object.

3.3.4.6 Behavior Instance Class When the VHDL simulator changes the value of a

signal, that signal returns a set of circuit components that must be updated. Each of these com-

50

id Behave identifier
blockid Block associated with this behave
code-select Current hypothesis in use for simulation
input[] List of signals tied to behave inputs
last-in Last input added
output[] List of signals ties to behave outputs
last-out Last output added

Figure 22. Data Fields for Behave Object

ponents is simulated by a Behave object. The source code for these objects is in the module

BEHAVE, in Appendix F.

The private data fields in the Behave object are shown in Figure 22. As in most objects, the

Behave object contains an identifier id. Each Behave object also contains a set of input signals and

a set of output signals. In Figure 22 these are the fields input[], last-in and output[], last-out.

The code for simulating the Behave object is contained within a separate Block object. The

block object is defined in the BLOCK module in Appendix F. The ID of the Block object is

kept in block-id field. Code-select determines which code selection to simulate in the Block object.

This field is kept within the Behave object since there might be many instances referring to the

same Block object, each selecting its own code.

The purpose of having both Block and Behave objects was efficiency. In VHDL there can

be several instantiations of the same object. An example is an adder constructed with two XOR

gates. When the XOR gate is defined in the source, a Block object is created to allow an XOR

gate to be simulated. To avoid duplicating the Block for both XOR gates in the full adder, two

Behave objects are created instead. Each of the Behave objects points to the XOR block with

the Behave object's block.id field. Although the code section for XOR might not be long enough

to justify breaking it out of the Behave object, other objects might be. This is especially true

once the various fault hypotheses are included.

A list of routines that can be used on Behave objects is shown as Figure 23. There are

two constructor functions. Both reset the indexes for the input signal and output signal arrays.

51

Behave Constructor
getid Return Behave identifier
set-code-select Select code for execution
get-current-select Get current code select
set-blockid Set block identifier
get-block-id Get block identifier
get-code.count Get number of hypothesis
addinput Add signal to input of Behave
get-input Get ID of signal tied to input
get.input.count Get number of input signals
add-output Add signal to output of Behave
get-output Get ID of signal tied to output
get-output-count Get number of output signals
print Print Behave (debugging function)

Figure 23. Functions for Behave Object

In addition, one constructor allows the ID of the block to be set. The other constructor lacks

parameters; this is required by C++ for creating an array of these objects.

The Behave objects include several access functions. The function get-id() returns the ID of

the object. To hypothesize faults, or to use the correct, behavior requires a call to set-code-selecto.

Passing a value of 0 to the object through this function allows the component to be simulated cor-

rectly (no faults). The current fault number is obtained by sending the block object get-current.-select.

To determine which Block object is to be executed for the Behave object, the simulator calls

get-block-ido.

A group of three functions handles access to the input signals for the object. The parser

calls add-input() to add a new signal to the Behave object. To get the ID of an input sig-

nal, the simulator calls get-input. Finally, the current number of input signals is obtained via

get-input-count(). A similar set of functions handles the output signals. Finally, for debugging

purposes, a print function prints a description of the Behave object.

3.3.4.7 Block class The purpose of the Block class of objects is to hold references to

the various code sections that could be run to simulate a particular VHDL architecture. The source

code for this object is in module BLOCK, in Appendix F. These are kept as an array within the

52

id Behave identifier
sim-code-idf list of code ID's for this block (process)
last-code-no Last code number

Figure 24. Data Fields for Block Object

block Constructor
get-id Get block identifier
add-code Add new process code ID to code list
get-code Get code ID from code list
get-code.count Get number of hypotheses in this block

Figure 25. Functions for Block Object

Block object. In all cases the code section that simulates correct operation of the architecture is

in position 0. Figure 24 contains a complete list of the private data fields within the Block object.

The functions available to the Block object include a constructor, a function for returning the

Block's ID, and functions for adding and retrieving the code section ID's. A full list of functions

is listed in Figure 25.

3.3.4.8 Code Class Each Block object contains at least one code object for simulating

the operation of the architecture. The code object is defined in the CODE module, in Appendix

F. The code object can be thought of as a "program" for simulating a process. It contains an ID

to allow it to be referenced by the appropriate Block. The "program" is stored as an array of

MCode objects, which are described later. Figure 26 contains a list of the data fields within the

Code object.

The functions available for the Code object, which are summarized in Figure 27, are straight-

forward. The get-id() function returns the Code's ID. The parser uses add-mcode() while

creating the process block. The code is simulated by calling the execute() function. A debugging

function print() lists the program to the screen.

id Code identifier
code-blka Program storage
last-code-no Next available line in program storage

Figure 26. Data Fields for Code Object

53

get-id Get identifier for code
add-mcode Add new mcode to program
execute Execute program
print Print program (debugging function)

Figure 27. Functions for Code Object

MNULL Null opcode
MGET Get signal (signal no.)
MYPOST Post signal (signal no., value, delay time)
MYPUSH Push
MNOT NOT (value)
MAND AND (valuel, value2)
MOR OR (valuel, value2)
M_XOR XOR (valuel, value2)
MEND End execution
MNAND NAND (valuel, value2)
MNOR NOR (valuel, value2)
MPOP Pop (and discard) value on top of stack
MSTORE Store (addr) value into register
M_RETRV Retrieve (addr) value from register

Figure 28. MCode Op Codes

3.3.4.9 MCode class The purpose of this class is to gather all the available operations

together. The only data field is the opcode. The opcodes are defined in the header file for the class.

A list of them -is shown in Figure 28. The complete class definition is in the MCODE module,

listed in Appendix F. The opcodes are negative values. If the simulator encounters a positive value,

it is interpreted as data and pushed onto the stack. When the code section for the process is

finished, the MEND opcode signals the simulator to stop.

MNULL is the equivalent of a NOP. It was present for debugging the simulator. MGET

and MPOST handle passing signal values into and out of the process. In both cases the signal

number used by the instruction is on the top of the stack This number is an index into the input or

output signal arrays in the executing Behave object. MPOST requires two additional parame-

ters: the new value for the posted signal, and how far in future will the new value be assigned to

the signal.

54

MCode Constructor
execute Execute the instruction
print print mnemonic (Debugging function)
get.op-code Return op code

Figure 29. Functions for Code Object

MJPOST creates an activation record using the signal name, value and delay time. This

delay time is added to the current simulator time in order to determine were in the priority queue

the new activation record will be placed.

MAND, MOR, MXOR, MNAND, and M._NOR perform their named operations

using the top two operands on the stack. The result is placed back on top of the stack. MNOT

inverts the value of the top of stack. A '1' value is changed to '0,' while a '0' is changed to a '1.'

Some hypotheses require an opcode for ignoring the current value of a signal. The MPOP

opcode handles this by discarding the current top of stack. The i.ew value can then be pushed onto

the stack.

For certain faults, a value below the top of the stack may need to be changed to reflect a

certain fault. The top of the stack can be saved and later restored by using the M-STORE and

M._RETRV opcodes. These codes save the top of stack in a specified register. The top of stack can

then be removed, and the value below ciianged. These opcodes also can be later used to implement

temporary storage for other uses not required at this time.

Figure 29 contains the list of functions for the MCode class. The execute() function

executes the instruction. The value of the opcode is returned via get-op-code). The function

print() was used to debug the system.

3.3.5 Diagnostic Routine This routine implements a version of Dries' Diagnose algorithm.

A flow diagram of Calvin's implementation is in Figure 30. (This is the same diagram as Figure 8.)

The algorithm is contained in the module CALVIN, listed in Appendix F.

55

Diagnose

F -collect Suspect

Queue??Finished

Yes

SGet next Suspect

Mor

_ • Yes _

F Select Hypo

Call Simulator

Different Compare Same

"Real" with
Sim

Reject Hypo Report Hypo
__Hp____

Figure 30. Calvin's Diagnostic Algorithm

56

3.3.5.1 Fault Determination During the diagnostic phase Calvin is given a list of input

values and recorded output values from the "outside world." Calvin sets the circuit's inputs to those

supplied and simulates the circuit. Calvin checks each sensor to see if it matches the recorded value.

If all match, Calvin declares that the circuit has no apparent problems.

3.3.5.2 Collection of Suspects If an output value does not match the expected value,

Calvin calls a routine to collect possible suspects. This routine takes the parsed representation of

the circuit and determines which component could affect the errant output. These are placed in a

queue.

Currently, suspects are generated by using a depth-first strategy. The component connected

to the output is placed first in the queue. Then the collection routine is called recursively for

each signal attached to that component's inputs. Recursion ends when it reaches an input signal.

Although not very efficient, this module is almost totally independent of the rest of Calvin, and

can be easily modified or replaced. The only output is the queue containing the list of suspects. It

can be rewritten without affecting the rest of the system.

3.3.5.3 Disproving Hypotheses Calvin takes each suspect from the queue and modifies

it according to the hypotheses generated during parsing. Each suspect body has a list of behaviors

that were given it while it was being parsed. The fault is simulated by changing the active behavior

to one of the fault behaviors. Calvin iterates through these hypotheses, re-simulating the circuit

after the behavior has been switched. Calvin then checks all the simulated outputs against those

that were supplied. If they match, Calvin prints a message stating the component's name and the

hypothesis' name. Calvin then continues with the rest of the hypotheses. When all the hypotheses

are finished for a suspect component, the behavior of that component is reset to the correct behavior.

Calvin pulls the next suspect from the queue and the cycle repeats.

57

3.4 Summary

This chapter gave an overview of Calvin. This included the generate and test areas. Next was

a more detailed look at Calvin, breaking it down into parsing, simulating and diagnostic routines.

Following this was a discussion of the implementation of Calvin. This included reasons behind the

languages selected, and detailed descriptions of the parser, simulator, microcode, data structures

and diagnostic routines. The source code for Calvin is in Appendices D through F. The next

chapter will describe some test files used, and will discuss ways that Calvin can be improved.

58

IV. Results

4.1 Testing Calvin

Three circuits were used to test the diagnostic powers of Calvin. These were a full adder, a

two-operation ALU, and an adder.

Figure 31 is the schematic for the full-adder. The schematic for the ALU is Figure 32 and for

the adder is Figure 33. In Figure 32 the dashed lines are the probes inserted into the circuit. The

actual VHDL code for the full-adder is in Appendix B.1, the ALU without probes in Appendix B.2,

the ALU with probes in Appendix B.3, and the adder in Appendix B.4. Appendix B.5 describes a

five-bit two's compliment ALU that performs addition and subtraction. This circuit is not discussed

in this chapter; it was included as another example that Calvin can use. To validate these files, they

were processed with the Zycad VHDL system. Since Calvin does not have libraries implemented,

minor modifications were made to the files. Complete details of the modifications are in Appendix

G. Appendix G also contains the results from the Zycad system. The example circuits performed

as expected.

In Calvin all VHDL identifiers are limited to the character 'I' followed by a three-digit number.

To keep track of the various components, the names were kept consistent.

The single-bit full adder was used during development. Although small, this circuit contained

all the elements supported by the VHDL simulator in Calvin.

A two-operation ALU simulated a system with multiple independent subsystems that had

little interaction. The ALU performs either an AND or an OR function on the two sets of inputs,

depending on a select line. Since these are logical functions, the operation on one bit does not

affect any other bit. The only area that affects all operations is the select line. The circuit was

modified by routing the internal lines to outputs (sensors).

59

1051 : \T 01 04

109091053 I
I

, I I054

,I l

1052

, I L• 1055

Figure 31. Single Bit Full-Adder Schematic

The four bit adder simulated a system in which the subcomponents interacted with each

other. The adder consisted of multiple copies of the original full-adder, with the carry-out of one

bit connected to the carry-in of the next. A faulty device will tend to affect many sensors.

4.1.1 Running Calvin This section discusses how Calvin was run. First is a description of

how to run Calvin. Then two examples are given, the full-adder and the ALU. In the examples the

correct operation of the circuit is validated. This is done by using sets of data that show correct

operation of the "real" circuit.

Calvin took the source code for the test circuits and an input file that contained test inputs

and outputs and attempted to find the problem (if one existed). The test outputs for the "actual"

circuit were calculated before running Calvin. To validate correct operation of Calvin, this was

done for correct operation of the circuit first. Then, Calvin was tested with errors placed in the

circuit. The results of the errors were calculated and supplied to Calvin as the outputs of the

"actual" circuit. In all cases Calvin did find the fault when the fault affected a sensor reading.

Unfortunately, most of the time Calvin also would find many other possible problems that also

could cause the same sensor values. Adding sensors to internal signals of the circuit cut down the

number suspects. In effect this was adding probes to the test circuit.

60

1595

1606

1510 1710

1520 1 1530

1532

1605
1024

1602 1624

1812

Figure 32. ALU Schematic

61

120 1130

1120

12202 14

11010

-------- 1132

a- aT

11522

11133

1112_________________ :132114

622

The user interface to Calvin was designed so that in can be run in batch mode. The user

supplies a set of flags (detailed in the module main.cpp), a source file, and a test file. The output

could then be re-directed into a file and examined. This allows many test cases to be run at the

same time. Most of the flags determined what information is displayed. The others controlled

small improvements to Calvin. When Calvin determined that a suspect could account for all the

outputs, it displayed it to the standard output device (screen or redirected-output file). After each

diagnosis, Calvin printed out information about that run. This information included:

"* how many suspect components that were collected,

"* how many hypotheses that Calvin generated,

"* how many different faults that could cause the supplied circuit's outputs,

"* the number of activation records posted by Calvin's VHDL simulator,

"* the number of Behave objects that were updated,

"* total number of simulations done by Calvin.

Idealy, these numbers should be as low as possible. The first three numbers determine how

well Calvin could find the actual culprit. The first, the number of suspects collected, show how

well the suspect collection routine discriminated among the circuit's components. The next value,

number of hypotheses checked, shows how many hypotheses Calvin checked during the diagnosis.

This higher this number is, the more hypothesis Calvin had to run to determine if a suspect could

cause the reported outputs. The third number is how many hypotheses Calvin found that could

cause the reported outputs. Since one assumption was that there was only a single fault, ideally

this value should be one. The last three numbers give an idea of how many computations that

Calvin must do. Since these numbers are closely related to the circuit's input values and number

of hypotheses that Calvin test, they are not important. They were used mainly as debugging tools

during implementation.

63

For a detailed example, consider the Full-Adder shown in Figure 31. While the full-adder

source was being parsed, Calvin generated mcode-blocks that would simulate the correctly-operating

version of each process in the full-adder. After each block was created, it was sent to a hypoth-

esis generating module. This module generated additional mcode-blocks to simulate the errors

that Calvin was programmed to check. These were gathered and placed in a behave object that

represented the process. A sample test file is shown in Figure 34. The top eight lines simulated

correct behavior of the circuit. The following lines simulated the circuit after certain faults had

been introduced. Calvin was run, showing the values Calvin thought should be at the output, as

well as the possible faults Calvin found. For the correct outputs, Calvin reported that its outputs

values matched those reported. Calvin then stated that no errors were found.

The first fault introduced was the output of 1082 stuck high. In this case, no matter what

the inputs are, the carry-out will always be high. The first set of input had all inputs low. In this

case both outputs also should be low, which Calvin also determined. Since the output values as

determined by Calvin did not match those supplied by the test file, Calvin attempted to find the

fault. The first step was to collect the possible suspects. Working upstream from 1082 (the carry-

out OR-gate), Calvin determined that 1082, 1081, 1080, and 1080 could be at fault. The duplicate

1080 component came from looking at the inputs of 1081 as well as 1082. An improved routine

that stopped the depth-first search when a previously-found suspect was encountered eliminated

the duplicate 1080.

Calvin simulated each hypothesis for a suspect component, starting with 1082. When Calvin

was parsing the VHDL code for an OR-gate, it determined that there were six possible problems

that could happen to the gate: output number 0 stuck high/low, input number 0 stuck high/low,

and input number 1 stuck high/low. Calvin hypothesizea each of these problems, and found that

the following could cause the reported values:

* output #0 stuck hi,

64

Inputs Outputs Comments
1051 1052 1053 1054 1055
(X) (Y) (Cin) (Sum) (Cout)
0 0 0 0 0 Correct operation
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
0 0 0 0 1 1082 Out stuck high
0 1 1 0 1 1082 Out stuck high

Figure 34. Test Data for FULLADD.VHD

Output #0 stuck hi at 82
Input #0 stuck hi at 82
Input #1 stuck hi at 82

Output #1 stuck hi at 81
Output #1 stuck hi at 80

Figure 35. Faults Found in FULLADD.VHD With I082's Output Tied High

"* input #0 stuck hi,

"* input #1 stuck hi.

Calvin did the same with the rest of the suspects. A complete list of possible faults Calvin found is

in Figure 35. Note this does include the introduced fault, 1082 output stuck high. The half-adders

each had 8 hypothesis (each of the four ports stuck high and stuck low), and the OR-gate had 6

(three ports stuck high/low). This meant Calvin checked a total of 22 hypotheses.

In the next example, the same fault (1082 output stuck high) was kept in the simulated "real"

circuit. But this time the inputs were 0, 1 and 1. Calvin simulated the circuit and found its outputs

the same as those reported to Calvin. Calvin decided there was no problem with the circuit.

A more complex example uses the ALU shown in Figure 32. Sample inputs to the circuit,

along with the outputs from a "real" circuit are in Figure 36. The circuit without the probes was

used first. To do this, the output signals 1710-1712 and 1810-1812 were commented out, and internal

signals with the same name were declared. This VHDL code is in Appendix B.2. Values for the

65

Inputs Outputs
1595 1510 511 512 1520 1521 1522 1530 1531 1532
S AO Al A2 B B 81 B2 ZO Zi Z2
0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 0 1 1
1 1 1 1 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1
0 1 0 0 0 1 1 0 0 0
0 1 1 1 1 1 1 0 1 1

Figure 36. Test Data for ALU.VHD

Output #0 stuck low at 605
Input #0 stuck low at 605

Output #0 stuck low at 603
Input #0 stuck low at 603
Input #1 stuck low at 603

Output #0 stuck low at 601
Input #0 stuck low at 601
Input #1 stuck low at 601

Figure 37. Faults Found in ALU.VHD With 1601's Output Tied Low

correctly working "real" circuit are at the top of the table, with simulated fault conditions and

their output values below. The first fault introduced was shorting output of gate i601 low. With all

inputs high, and the AND operation selected, Calvin determined that all the outputs also should

have been high. Comparing against those supplied by the "real" circuit, Calvin found one of the

components tied to the 1530 output was at fault. The suspects were 1605, 1604, 1603, 1606, 1602,

and 1601. Since none of the other components affect the output 1503, Calvin did not hypothesize

any of others. After checking out all the hypotheses for the 1601-1606, Calvin came up with a list

of possible suspects. These are in Figure 37. Calvin did find the fault, 1601's output stuck low,

although it also came up with seven others.

This case was re-run using the ALU circuit with probes (Appendix B.3). The same inputs

and outputs were used, with the additional values for the probes supplied. These values are in

Figure 38. With the additional information, Calvin was able to narrow it down to three suspects,

which are listed in Figure 39. Since 1710 along with 1530 was low, the hypotheses for 1603 and 1605

were ruled out. No hypothesis for these components could account for the '1' value at 1710.

66

Inputs Outputs
1595 1510 511 512 1520 1521 1522 1530 1531 1532 1710 1810 1711 1811 1712 1812
S A0 Al A2 BO 1 I B2 Z0 Z Z2 {AO YOO YAl YO YA2 Y02
0 1 1 1 1 0 1 1 -0 1 1 1

Figure 38. Test Data for ALU.VHD with Sensors(Output #0 stuck low at 601
Input #0 stuck low at 601
Input #1 stuck low at 601

Figure 39. Faults Found in ALU.VHD With Probes

One characteristic of combinatorial digital logic is that most faults cannot be found using one

set of test data. For example, if an input was stuck low, and the actual signal value was low, the

circuit would operate correctly. The circuit's sensors would show the correct result for this set of

commands. The fault will only become apparent when the signal value is high.

4.2 Improvements

4.2.1 Improving the Hypothesis Generator Calvin currently takes all components upstream

from the incorrect output and places them in the suspect queue. Calvin could use knowledge of

boolean algebra to better select candidate suspects. For example, consider one bit of the ALU

shown in Figure ref401. Assume that both data inputs are high, and the select line is high for an

OR operation. When simulating the circuit's processes, Calvin would place "reasons" for a signal's

value in the activation record along with the signal's new value. These could then be placed in the

Behave object. For OR gate 1605, the value on output signal 1530 would be 1 because of input

signal 1004's 1 state. Now, suppose that the signal 1530 is found to be low instead of the simulated

high state. Since 1530 was caused by 1003, and OR gate 1605 was assumed to be working, Calvin

would not have to consider components upstream from the other input, 1003. (11:394-396)

4.2.2 Probing By bringing out internal signals to sensors, Calvin reduced the number of

suspect hypotheses dramatically. This is, in effect, inserting additional probes into the circuit.

67

Calvin contains component connection data within its Behave and Signal objects. Reasoning

with this information, an additional module can suggest possible signal lines to monitor.

An easy way would be to reason from the topology of the circuit. A simple way would be to

ask for the value of the signal immediately upstream from the incorrect output. If this matches the

simulated signal's value, the component downstream must be the culprit. If not, continue upstream.

Calvin can support this technique, with its driver-bi field in the Signal object.

A more efficient technique, described by Davis and Hamscher, would be to perform what is

in effect a binary search. Examining the connection diagram of the circuit, Calvin could select a

signal that roughly divides the circuit into two section. If that signal's actual value still does not

match the simulated value, all components downstream from that signal are exonerated. This can

continue, ideally splitting the suspect components into two groups each time, until a single suspect

is found. (11:410-411)

4.2.3 Extending the VHDL language As with all model,; VHDL has some limitations.

VHDL lacks a way to describe easily the physical layout of a system. Examining the VHDL

source for the ALU in Appendix B.2, one cannot determine if the OR gates are on a common IC.

This prevents easily determining faults such as solder bridges, or broken power pins. Although a

single fault, the effects might be seen in two entirely separate parts of the circuit.

One way of extending the language for diagnostic purposes would be adding commands for

explicitly stating what certain errors might do. The C language handles implementation specific

features by the pragma keyword; in VHDL this might be handled with any new keywords embedded

within comment lines. These additions could link any processes that describe error conditions to

those that describe proper behavior. In Calvin, this would require additions only to the parser; the

errant processes would be linked to proper behaviors.

68

4.2.4 Interfacing with an Expert System Calvin, as it exists now, only has the rudiments of

Al behavior. A rule-based expert system could be interfaced with Calvin, turning it into a hybrid

model-based/rule-based system. Obvious places that would benefit would be the fault-hypothesis

and the suspect selection.

Knowledge that certain subcomponents have a high failure rate could be placed in the source.

A good place would be in library packages that are reused. With rules based on this information,

the suspect queue could be reordered to place these components nearer the front Although this

would not improve the current implementation, a real-time version might be able to come up with

a "best guess" if there is not enough time to complete the algorithm.

4.3 Summary

In this chapter I discussed three VHDL descriptions that Calvin used. Then I discussed ways

in which the current Calvin program can be extended and made more powerful. In the next chapter

I will summarize the thesis and discuss my recommendations for future work.

69

V. Observations and Recommendations

5.1 Review

In Chapter 1 is a review of the problem that this thesis attacks. Chapter 2 records a review of

some model-based c' i,,nostic techniques, including Scarl's "Full consistency" and Dries' "Diagnose"

algorithms. Chapter 3 contains a description of Calvin, including the internal structures and

algorithms. A description of the test programs is in Chapter 4, along with ideas on how Calvin can

be extended.

5.2 Accomplishments

In this thesis effort I designed Calvin, a model-based diagnostic system that used VHDL to

describe the model. Calvin is a starting point that can be :.sed for more powerful model-based

paradigms. Some of my accomplishments during this effort:

"* VHDL can be used to describe the model for a model-based diagnostic technique. VHDL was

designed to be a description language, and future Air Force contracts mandate its use.

"* The goal of creating Calvin was to develop a VHDL system that can be used for implementing

model-based diagnostic techniques. I did this by:

- Implementing a VHDL parser that generated a representation of a system from a VHDL

source file. This representation included all the necessary information for reasoning

about the structure of the components in the system, as well as the behavior of those

comI .- s.

- Implementing a VHDL simulator that could take the representation from the parser and

a set of input values, and simulate the system generating output values.

- Creating routines that could modify the parsed representation so that errors in the

behavior of the original circuit can be simulated.

70

"* I implemented a version of Scarl's "full consistency" algorithm that was based on Dries'

"Diagnose" algorithm.

5.3 Recommendations

Based on my experiences, the following is a list of recommendations for future work:

"* Expand the implemented VHDL language. The implemented subset is limited to only logi-

cal operations. Expanding the VHDL constructs that Calvin can recognize will allow much

more complex systems. These include those whose behavior is described by loops or condi-

tional statements. Implementing the VHDL TYPE command would allow multi-value logic

systems, such as an "OFF" state. Diagnosing analog systems would require floating point

arithmetic. Since the parser ignores unknown constructs, there should not have to be much

rewriting of existing code.

"* Implement the probing improvements that Chapter 4 describes. These should be the easiest

to add. I have already manually placed probes in the source code, so Calvin should not need

new data structures.

"* Improve the hypothesis generator. Here should be the easiest place to put "real AI" into

Calvin. Calvin already has the data structures for reasoning on the structure of the circuit.

The hardest problem may be reasoning from the VHDL processes.

"* Extend the diagnostic algorithm. The current algorithm only allows non-time-dependent

systems to be diagnosed. The VIIDL model contains time information, so there should be

a way to reason on systems that have "memory," sich as sequential systems. One way may

be to maintain the lis of suspects, and use that information when new inputs enter the test

system. The new values should affirm certain hypotheses and reject, others.

71

5.4 Summary

To perform model-based diagnostics, there must be some model to reason from. To keep

from having to build a new diagnostic system for each new product, a language can be used for the

model of the product. One approach may be to create a special-purpose language for describing

the model; however, there are already description languages in existence. One of these languages

is VHDL, a VHSIC hardware description language. Calvin uses VHDL as a model description

language.

In artificial intelligence applications, sometimes it seems as if very little of the project involves

any "artificial intelligence." Instead, most of the effort is in creaLing a platform for the application.

This is also true for using VHDL for model-based diagnostics. Most of my time was spent getting

the simulator and parser portions of Calvin working. A lot of the rest was taken up interfacing

Dries' Diagnose algorithm with the simulator and parser.

With Calvin, I have created an important framework that future researchers can easily extend.

Future work should be on extending Calvin's diagnostic and simulation routines.

72

Appendix A. Supported VHDL Grammar

entity-declaration:
ENTITY identifier IS

entity.header
entity-declarative-part

END;

entity-header
port-clause

port-clause ::=
port (formal-port-list);

formal-port_!ist ::=
[format-port-element]

formal-port-element ::=
SIGNAL identifier-list : mode
I SIGNAL identifier-list : mode; formal-port-element

mode ::=
IN
I OUT

architecture-body
ARCHITECTURE identifier OF name IS

architecture-declarative-part
BEGIN

architecture-statement-part
END;

architecture-declarative-part
[block-declarativeitem]

block-declarative-item:
signal-declaration
I component-declaration

architecture-statement-part
[concurrent -statement]

configuration-declaration ::=
CONFIGURATION identifier OF name IS

block-configuration
END;

73

block-configuration
FOR block.specification

use-clause
configuration-item

END FOR;

block-specification
identifier

use-clause ::=
USE identifier[,identifier];

configuration-item ::=
component-configuration

component-configuration ::=
FOR instantiation/ist : identifier
use-binding-indication
block-configuration
END FOR;

use-binding-indication:
USE bindingindication;

binding~indication:
entity-aspect

entity-aspect ::=
ENTITY identifier (identifier)

signal-declaration ::=
SIGNAL identifieriist : BIT

component-declaration ::=
COMPONENT identifier

portilocal-port-list
END COMPONENT;

port local-port-list ::=
(local-portlist);

local-port-list ::=
identifier-list : local-port-mode BIT
I identifier-list : local-port-mode BIT;
local-port-list

local-port-mode
IN
lOUT

74

concurrent-statement
process-statement

process-statement =
PROCESS
BEGIN

sequen ce-of-statements
END PROCESS;

sequence-of-statements ::=
{sequential-statement}

sequential-statement
signal-assignment-statement

signal.assignment-statement :
target j= waveform;

terget ::=
identifier

waveform ::=
expression AFTER expression

expression ::=
relation-and-relation

relation-or-relation
relation-nand-nor-relation
relation-xor-relation

relation-and-relation ::=
relation AND relation

relation-or-relation ::=
relation OR relation

relation-nan&dnor-relation
relation

relation NAND relation
I relation NOR relation

relation-xor-relation ::=
relation XOR relation

relation ::=
simple-expression

75

simple-expression =
primary

primary ::=
literal
I identifier

literal ::=
numeric-literal

numeric-literal ::=
decimaLint

decimal-int
[digit]

76

Appendix B. VHDL Source Code

B.I Full-Adder

This section contains the VHDL source for a full-adder. This file was used by Calvin.

-- One-bit full-adder

-- Consists of 2 half-adders and an OR gate

-- X + Y + Cin = Z + Cout

-- This full-adder is used in the four-bit adder

-------- OR Gate---------
entity i015 is
port(

iOl1: in Bit;
i012: in bit;
i013: out bit

end;

architecture i025 of i015 is
begin

process
begin

i013 <= i011 or i012 after 5;
end process;

end i010;

------.Half adder--------
entity i010 is
port(

iOll: in Bit;
i012: in bit,
i013: out bit;
i014: out bit

end;

architecture i020 of iOlO is
begin

process
begin

i013 <= i011 xor i012 after S;
i014 <= i011 and i012 after 5;

end process;

77

end i010;

------.Full Adder--------
entity iOSO is
port(

iO1,i052,iOS3:in bit;
iO54,iO55:out bit

end;

architecture i060 of ASO is

signal i090:bit;
signal i091:bit;
signal i092:bit;
component i010

port(
iO01: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end component;
component i030

port(
iOll,i012:in bit;
i013:out bit

end component;

begin
i080:iOlO

port map(
io01 => i051,
i012 => i052,
i013 => i090,
i014 => i091);

i081 :iOO
port map(

io01 => i090,

i012 => i053,
i013 => i054,
i014 => i092);

i082:i030
port map(

io01 => i091,
i012 => i092,

i013 => i055);
end;

78

-------.Circuit-----------
configuration i099 of ASO is

for i060
for i080,iO8i:iO0O use entity iOO(iO2O);
end for;
for i082:i030 use entity i015(i025);"
end for;

end for;
end;

79

B.2 Two Operation ALU

This section contains the VHDL source for a two-operation AND/OR ALU The code to
simulate probes placed in the circuit are commented out in this code.

-- Three-bit, Two-operation ALU
-- Performs AND or OR function of 2 three-bit values

-- If S=1, A2A1AO AID B2BIBO = Z2Z1ZO
-- If S=0, A2A1AO OR .B2B1BO = Z2Z1Z0

-- This example has the probes inserted at the outputs
-- of the AND/OR functions commented out.

-------- OR Gate---------
entity i200 is
port(

i201: in Bit;
i202: in bit;
i203: out bit

end;
architecture i299 of i200 is
begin

process
begin

i203 <= i201 or i202 after 5;
end process;

end;

-------- AND Gate---------
entity i1O0 is
port(

i101: in Bit;
i102: in bit;
i103: nut bit

end;
architecture i199 of i100 is
begin

process
begin

i103 <= ilO1 and i102 after 5;
end process;

end;

-------- INVGate---------
entity i300 is
port(

i301: in Bit;

8O

i302: out bit

end;
architecture i399 of i300 is
begin

process
begin

i302 <= not i301 after 5;
end process;

end;

entity i500 is

port(
i510 in bit; -- A
i511 in bit; -- A
iS12 in bit; -- A
i520 in bit; -- B
i521 in bit; -- B
iS22 in bit; -- B
i595 in bit; -- sO
i530 out bit; -- Z
i531 out bit; -- Z
i532 out bit -- Z

-- The following are the commented-out probes

-- i710 out bit; -- YOAND
-- i711 out bit; -- YlAND
-- i712 out bit; -- YIAND
-- i810 out bit; -- YOOR
-- i811 out bit; -- YIOR
-- i812 out bit -- YIOR

end;

architecture i599 of iSOO is

component i100
port(i101,

i102 In Bit;
i103 out Bit);

end component;

component i200
port(i201,

i202 In Bit;
i203 out Bit);

end component;

component i300

81

port(i301 : In Bit;
i302 Out Bit);

end component;

signal
iO00,
iOO1,i003,i004,
iO11,i013,i014,
i021,i023,i024

bit;

-- The commented-out probes have been replaced by
-- these internal signals

signal i710,i711,i712 bit;
signal i810,i811,i812 bit;

begin
-- Control line inverter
i606: i300 port map(1301=>i595, i302=>iOOO);

-- Bit 0
i601: i100 port map(i101=>i510, ii02=>iS20, i103=>i710);
i602: i200 port map(i201=>i510, i202=>i520, i203=>i810);
i603: i100 port map(ii01=>i710, i102=>1000, i103=>i003);
±604: i100 port map(i101=>i810, i102=>i595, i103=>i004);
i60S: i200 port map(i201=>i003, i202=>i004, i203=>i530);

-- Bit 1
i611: i100 port map(i101=>i511, i102=>i521, i103=>i711);
i612: i200 port map(i201=>i511, i202=>i521, i203=>i811);
i613: i100 port map(i101=>i711, i102=>i000, i103=>i013);
i614: i100 port map(i101=>i811, i102=>iS95, i103=>i014);
±61S: i200 port map(i201=>i013, i202=>i014, i203=>iS31);

-- Bit 2
i621: i100 port map(i101=>i512, i102=>i522, il03=>i712);
i622: i200 port map(i201=>i512, i202=>i522, i203=>i812);
i623: i100 port map(i101=>i712, i102=>iO00, i103=>i023);
i624: i100 port map(i101=>i812, i102=>i69S, i103=>i024);
i625: i200 port map(i201=>i023, i202=>i024, i203=>i532);

end;

------- Circuit----------
configuration iO00 of i±00 is

for i599
-- AND gates
for i601,i603,i604:i100 use entity i100(i199);
end for;

82

for i611,i613,i614:iOO use entity ilOO(i199);
end for;

for i621,i623,i624:ilOO use entity i1OO(il99);

end for;

-- OR gates

for i602,i605:i200 use entity i200(i299);

end for;

for i612,i615:i200 use entity i200(i299);

end for;

for i622,i625:i200 use entity i200(i299);

end for;

-- INV gates

for i606:i300 use entity i300(i399);

end for;

end for;

end;

83

B.3 Two Operation ALU with Probes

This section contains the VHDL source for a two-operation AND/OR ALU This code contains
the probes placed in the circuit.

-- Three-bit, Two-operation ALU
-- Performs AND or OR function of 2 three-bit values

-- If S=1, A2AIAO AND B2B1BO = Z2Z1ZO
-- If S=O, A2A1AO OR B2BIBO = Z2Z1ZO

-- This example has the probes inserted at Lhe outputs
-- of the AND/OR functions. The, bring the results of both
-- functions to sensors.

-------- OF Gate---------
entity i200 is
port(

i201: in Bit;
i202: in bit;
i203: out bit

end;
architecture i299 of i200 is
begin

process
begin

i203 <= i201 or i202 after 5;
end process;

end;

-------- AND Gate---------
entity i100 is
port(

i101: in Bit;
i102: in bit;
i103: out bit

end;
architecture i199 of ilOO is
begin

process
begin

i103 <= i101 and i102 after 5;
end process;

end;

-------- INVGate---------
entity i300 is
port(

84

i301: in Bit;
i302: out bit

end;
architecture i399 of i300 is
begin

process
begin

i302 <= not i301 after 5;
end process;

end;

entity 100 is
port(

iSO in bit; -- A
i511 in bit; -- A
i512 in bit; -- A
i520 in bit; -- B
i521 in bit; -- B
i522 in bit; -- B
i595 in bit; -- sO
i530 out bit; -- Z
i531 out bit; -- Z
i532 out bit; -- Z

-- These output signals are the probes

i710 out bit; -- YOAID
i711 out bit; -- Y1AND
i712 out bit; -- YIAID
i81O out bit; -- YOOR

i811 out bit; -- YIOR
i812 out bit -- YIOR

end;

architecture i599 of iSOO is

component i100
port(i101,

i102 In Bit;
i103 out Bit);

end component;

component i200
port(i201,

i202 In Bit;
i203 out Bit);

end component;

85

component i300
port(i301 In Bit;

i302 Out Bit);
end component;

signal
i000,

i0O1,i003,i004,
i0l1,i013,i014,
i021,i023,i024
: bit;

begin
-- Control line inverter

i606: i300 port map(i301=>i595, i302=>iOOO);

-- Bit 0
i601: i100 port map(i101=>iS10, i102=>i520, i103=>i710);
i602: i200 port map(i201=>i510, i202=>i520, i203=>i810);
i603: i100 port map(i101=>i710, i102=>i000, i103=>i003);
i604: i100 port map(i101=>i810, i102=>i595, i103=>i004);
i605: i200 port map(i201=>i003, i202=>i004, i203=>i530);

-- Bit I
i611: i100 port map(i101=>iSll, i102=>i521, i103=>i711);
i612: i200 port map(i201=>i511, i202=>i521, i203=>i811);
i613: i100 port map(i101=>i711, i102=>i000, i103=>i013);
i614: i100 port map(i101=>i811, i102=>i595, i103=>i014);
i615: i200 port map(i201=>i013, i202=>i014, i203=>i531);

-- Bit 2
i621: i100 port map(i101=>i512, i102=>i522, i103=>i712);
i622: i200 port map(i201=>i512, i202=>iS22, i203=>i812);
i623: i10O port map(ii01=>i712, i102=>i000, i103=>i023);
i624: i100 port map(i101=>i812, i102=>i595, i103=>i024);
i625: i200 port map(i201=>i023, i202=>i024, i203=>i532);

end;

------- Circuit----------
configuration iOOO of i500 is

for i599
-- AND gates
for i601,i603,i604:ii00 use entity i100(i199);
end for;

for i611,i613,i614:ii00 use entity i100(i199);
end for;

for i621,i623,i624:iiOO use entity i100(i199);
end for;

86

-- OR gates

for i602,i605:i200 use entity i200Ci299);
end for;

for i612,i615:i200 use entity i200Ci299);
end for;

for i622,i625:i200 use entity i200(i299);
end for;

-- INV gates

for i606:i300 use entity i300(i399);
end for;

end for;
end;

87

B.4 Four-bit Adder

This section contains the VHDL source for a four-bit adder. This code was used by Calvin.

-- Four-bit Adder

-- Consists of 4 full-adders in cascade

-- X3X2XIXO + Y3Y2YIYO + Cin = Z3Z2ZIZO + Cout

-------- OR Gate---------
entity i015 is
port(

iOll: in Bit;
i012: in bit;
i013: out bit

end;

architecture i025 of iOI5 is
begin

process
begin

i013 <= i011 or i012 after 5;
end process;

end i010;

------.Half adder--------
entity i01O is
port(

iOll: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end;

architecture i020 of i010 is
begin

process
begin

i013 <= iOll zor i012 after 5;
i014 <= iO01 and i012 after 5;

end process;
end i02O;

------Full Adder--------
entity i050 is
port(

i1OO : in bit; -- Cin

88

i110, -- XO
illl, -- X

i112, -- X2
i113 : in bit; -- X3
i120, -- YO
i121, -- Y1
i122, -- Y2
i123 in bit; -- Y3
i130, -- ZO
i131, -- Zi
i132, -- Z2
i133 out bit; -- Z3
i140, -- coutO
i141, -- coutl
i142 : out bit; -- cout2
i143 out bit -- Cout

end;

architecture i060 of i050 is

signal i200,i201,i202:bit;
signal i210,i211,i212:bit;
signal i220,i221,i222:bit;
signal i230,i231,i232:bit;

component i010
port(

i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end component;
component i030

port(
i011,i012:in bit;
i013:out bit

end component;

begin
-- Bit 0

i500:i010
port map(

i011 => i110,
i012 => i120,

i013 => i200,
i014 => i201);

89

i501:i010
port map(

i011 => i200,
i012 => i100,
i013 => i130,
i014 => i202);

iS02:i030
port map(

i011 => i202,
i012 => i201,
i013 => i140);

Bit 1
islO:i010

port map(
±011 => ill,
i012 => i121,
i013 => i210,
i014 => i211);

i±11:i010
port map(

A011 => i210,
i012 => i140,
i013 => i131,
±014 => i212);

i512:i030
port map(

011 => i212,
i012 => i211,
i013 => i141);

-- Bit 2
iS20:i010

port map(
±011 => i112,
i012 => i122,
i013 => i220,

i014 => i221);

i521:i010
port map(

i011 => ±220,
i012 => i141,
i013 => i132,

i014 => i222);

i522:i030
port map(

i011 => i222,

90

i012 => i221,

i013 => i142);
-- Bit 3

i530:iO1O
port map(

iAl => i113,
i012 => i123,
i013 => i230,
i014 => i231);

i531:iOlO
port map(

iO1 => i230,
i012 => i142,
i013 => i133,
i014 => i232);

i532:i030
port map(

iAl => i232,
i012 => i231,

i013 => i143);
end;

-------.Circuit----------
configuration i099 of AOSO is

for i060
for iSOO,iSO1:iO0O use entity iO0O(i020);
end for;
for i502:i030 use entity iO1S(i025);
end for;

for iS10,iSll:iOiO use entity iOiO(iO2O);
end for;
for i512:i030 use entity iO15(i025);
end for;

for i520,i521:iO0O use entity iOO(iO2O);
end for;
for iS22:i030 use entity i01S(i025);
end for;

for i530,i531:iO0O use entity iOlO(iO2O);
end for;
for iS32:i030 use entity i01SCi025);
end for;

end for;
end;

91

B.5 Five-bit 2s Compliment ALU

This section contains the VHDL source for a five-bit 2's Compliment ALU. The ALU performs
addition and subtraction. This section is included as an additional example that can be used with
Calvin.

-- This code describes a 5 bit 2's bit ALU.
-- Operations include add and subtract of two
-- 5-bit 2's compliment numbers.

-------- OR Gate---------
entity i100 is
port(

i101: in Bit;
i102: in bit;
i103: out bit

end;
architecture i199 of ilO0 is
begin

process
begin

i103 <= il01 or i102 after 5;
end process;

end;

-------- AND Gate---------
entity i200 is
port(

i201: in Bit;
i202: in bit;
i203: out bit

end;
architecture i299 of i200 is
begin

process
begin

i203 <= i201 and i202 after 5;
end process;

end;

-------- INVGate---------
entity i300 is
port(

i301: in Bit;
i302: out bit

end;
architecture i399 of i300 is
begin

92

process
begin

i302 <= not i301 after 5;
end process;

end;

-- FULL-ADDER
entity i400 is
port(

i401: in bit; -- x
i402: in bit; -- y
i403: in bit; -- Cin
i404: out bit; -- Sum
i405: out bit -- Cout

end;
architecture i499 of i400 is
begin

process
begin

i404 <= i401 xor i402 xor i403 after 5;
i405 <= (i401 and i402) or

(i403 and i401) or
(i403 and i402) after 5;

end process;
end;

entity i500 is
port(

i510 in bit; -- X
i511 in bit;
i512 in bit;
i513 in bit;
i514 in bit;
i520 in bit; -- Y
i521 in bit;
i522 in bit;
i523 in bit;
i524 in bit;

i544 in bit; -- add
i545 in bit; -- sub
i530 out bit; -- S
i531 out bit;
i532 out bit;
i533 out bit;
i534 out bit

end;
arshitecture i599 of i5O0 is

93

component i200
port(i201,

i202 In Bit;
i203 out Bit);

end component;

component i100
port(i101,

i102 In Bit;
i103 out Bit);

end component;

component i300
port(i301 In Bit;

i302 Out Bit);
end component;

component i400
port(

i401: in bit; -- x

i402: in bit; -- y
A403: in bit; -- Cin
A404: out bit; -- Sum

i405: out bit -- Cout

end component;

signal i998,
iOO1, i002, i003, i004, i005, i900,
All, i012, i013, i014, i015, i901,
i021, i022, i023, i024, i025, i902,
i031, i032, i033, i034, i035, i903,
i041, i042, i043, i044, i045, i904 Bit;

begin
i701 : i100 port map(i101=>i544, i102=>i645, i103=>i998);
-- Bit add/sub

-- Bit 0

i710 i300 port map(i301=>i520, i302=>iOO);
i711 i200 port map(i201=>i545, i202=>iOO, i203=>i002);
i712 i200 port map(i201=>i544, i202=>iS20, i203=>iOO3);
i713 i200 port map(i201=>i510, i202=>i998, i203=>iOO4);
i714 i100 port map(i101=>i003, i102=>i002, i103=>i00S);
i715 i400 port map(A401=>004, A402=>005, i403=>i545,

i404=>i530, i405=>i900);

-- Bit 1
i720 i300 port map(i301=>i521, i302=>i011);
i721 i200 port map(i201=>i545, i202=>i011, i203=>i012);
i722 i200 port map(i201=>i544, i202=>i521, i203=>i013);
i723 i200 port map(i201=>1ll, i202=>i998, i203=>i014);

94

i724 ilOO port map(i101=>i013, i102=>i012, i103=>iO0S);
i725 i400 port map(i401=>i014, i402=>iO1S, i403=>i900,

i404=>iS31, i406=>i901);
-- Bit 2
i730 i300 port map(i301=>i522, i302=>i021);
i731 i200 port map(i201=>i021, i202=>i545, i203=>i022);
i732 i200 port map(i201=>i544, i202=>i522, i203=>i023);
i733 i200 port map(i201=>iS12, i202=>i998, i203=>i024);
i734 i100 port map(i101=>i023, i102=>i022, i103=>i025);
i735 i400 port map(i401=>i024, i402=>i02S, i403=>i901,

i404=>i532, i405=>i902);
-- Bit 3

i740 i300 port map(i301=>i523, i302=>i031);
i741 i200 port map(i201=>i031, i202=>i545, i203=>i032);
i742 i200 port map(i201=>i544, i202=>i523, i203=>i033);
i743 i200 port map(i201=>i513, i202=>i998, i203=>i034);
i744 i100 port map(il0l=>i033, i102=>i032, i103=>i035);
i745 i400 port map(i401=>i034, i402=>i035, i403=>i902,

i404=>i533, i405=>i903);
-- Bit 4
i750 i300 port map(i301=>i524, i302=>i041);
i751 i200 port map(i201=>i041, i202=>i545, i203=>i042);
i752 i200 port map(i201=>i544, i202=>i524, i203=>i043);
i763 i200 port map(i201=>i514, i202=>i998, i203=>i044);
i754 i100 port map(i101=>i043, i102=>i042, i103=>i045);
i756 i400 port map(i401=>i044, i402=>i045, i403=>i903,

i404=>i534, i405=>i904);
-- Done
end;

-------.Circuit----------
configuration i000 of i500 is

for i599
for i701:i100 use entity i100(i199);
end for;
for i710,i720,i730,i740,i750:i300 use entity i300Mi399);

end for;
for i711,i712,i713,i721,

i722,i723,i731,i732,
i733,i741,i742,i743,
i751,i7S2,i753:i200 use entity i200(i299);

end for;
for i714,i724,i734,i744,i754:ilOO use entity i100(i199);
end for;
for i715,i725,i735,i745,i755:i400 use entity i400(i499);
end for;

end for;
end;

95

Appendix C. FLEX modifications

Before the Borland C++ 3.1 compiler could compile the output of FLEX, some changes had

to be made to FLEX.SKL file. This file forms the skeleton of the FLEX output file. The following

changes were made:

1. Remove line 23 - "#include <osfcn.h>"

2. Remove line 33 - "#ifdef _STDC-'

3. Remove line 46 - "#endif _..STDC__'

No changes were required for Bison.

96

Appendix D. Compiler-compiler Source Code

D.1 Overview

This module contains code for the compiler-compilers Bison and FLEX. The module UV

describes the grammar for VHDL. The individual VHDL tokens are parsed by FLEX according to

the module UV.LEX. These tokens are then parsed according to the VHDL grammar. As soon as

a construct has been recognized, the appropriate parser module is called to fill in the data. These

modules are described in Appendix E.

D.2 UV
/*

FILE: UV

This is the parser file for Calvin.
The simulator objects are built up by calling external C/C++functions
defined in the Parser modules.

*/

** Portions of the following code was extracted from
** LALR(1) grammar for ANSI Ada (public domain)
** by Herman Fischer
** adapted by: Gerry Fisher & Philippe Charles

** VHDL source for yacc
** syntax analysis with error recovery
** symbol table
** memory allocation
** no code generation
** shift/reduce conflicts: 1

** Symbol conventions used:

** [too] is denoted _foo-
** {foo} is denoted --too--
** {, foo } is denoted ---_too--
** too-bar is a single nonterminal

97

** FOO__bar is.a nonterminal where the keyword FO0 is
** followed by a nonterminal bar

// History of original VHDL grammar

* Date: 19 Veb, 1990 S. Datta, Univ of Cincinnati

*This file currently contains 3 shift/reduce and 3 reduce/reduce conflicts:
*

*Shift/reduce conflicts:

* 1. name -> simple-name
*and .architecture.identifier. -> LeftParen simplename RightParenERR
*cause I shift/reduce conflict.

* 2. attribute-name -> name Apostrophe attribute-designator .aggregate.
*causes I shift/reduce conflict (since .aggregate. -> I aggregate)

* 3. component-instantiation.statement -> a-label name
*.generic.map-aspect. .port-map-aspect. Semicolon-ERR
*causes 1 shift/reduce conflict (with .generic-map-aspect.).

*Reduce/reduce conflicts:

* 1. range -> attribute-name
*and name -> attribute-name causes 1 reduce/reduce conflict.

* 2. expanded-name -> simple-name
*and name -> simple-name causes 2 reduce/reduce conflicts.

*To avoid conflicts while implementing on an LALR(1) shift-reduce
*parser-generator such as YACC or BISON, the original IEEE-1076 VHDL grammar
*has been modified at appropriate places:

*The production for formal.port.element contains "type-mark .constraint."

*instead of ".name. type-mark .constraint." (ie instead of subtypeindication)
*(AFIT file contains only "type-mark")

*The production for formal-generic-element contains "type-mark .constraint."
*instead of ".name. type-mark .constraint." (ie instead of subtype-indication)
*(AFIT file contains only "type-mark")

*In the production for architecture-body, "simple-name" (AFIT) has been
*changed to "name" in accordance with the LRM

*The production for configuration-declaration contains "name" instead of
*"entity-name" (LRM), or "Identifier" (AFIT)

*Missing Semicolon-ERR at end of production for block-configuration (in AFIT

98

*file) has been set right.

*In production for block-specification, "name" causes conflict and has not
*been implemented.

*In production for component-configuration, "Identifier" (AFIT) has been
*replaced by "name" in accordance with the LRM definition. Besides, missing
*SemicolonERR (in AFIT file) has been set right.

*In production for operator-symbol, "sign" has not been implemented. Besides,
*"StringLit" (absent in AFIT file) has been added in accordance with the LRM
*definition. Also, "logical-operator" and "miscelaneous.operator", and
*productions for them have been added (these were commented out in the AFIT
*file).

*In production for procedure-parameter- element, ".name. type-mark
*.constraint." (or subtype-indication) has been replaced with "type-mark
*.constraint.". AFIT file contains only "type-mark".

*In production for function-parameterelement, ".name. type-mark
*.constraint." (or subtype- indication) has been replaced with "type-mark
*.constraint.". AFIT file contains only "type-mark".

*In production for scalar.type.definition, "range.type.definition" includes
*both integer and floating point types.

*In production for index.subtype.definition, "type-mark" (LRM) has been
*replaced by "name".

*In production for discrete-range, "subtype- indication" (ie ".name.
*type-mark .constraint." in LRM) has been replaced by "name range-constraint
*I type-mark". Note: "constraint" (LRa) implies "range-constraint" or
*"index constraint", but "indexconstraint" has been ommitted in the
*production for discrete-range. This is the same as the AFIT file, except that
*"type-mark" has also been ommitted in AFIT file, since it causes 2
*reduce/reduce errors.

*Missing Semicolon-ERR in AFIT file for the production for
*incomplete-type-declaration has been set right here.

*This file as well as AFIT file contains "expanded-name" in production for
*"type-mark" to avoid conflict between "type-mark" and "constraint".

*In production for constraint, "index -constraint" has been replaced by
*"aggregate", both in this as well as the AFIT file.

*Missing Semicolon-ERR in AFIT file for the production for file-declaration
*has been set right.

*In production for association-element, ".formal-partArrow. actual-part"
*has been replaced by "name Arrow OPEN-or-expression I OPEI-or.expression".

99

*Productions for "formal-part" and "actual-part" have been replaced by their
*equivalents. (ie formal-part -> name I LeftParen name RightParen;
*actual.part -> OPEN.or.expression I LeftParen OPEN.or.expression RightParen;)

*In production for local.port.element, "subtype-.indication .BUS.
*.VarAsgn- expression." has been replaced by "type-mark .constraint." in this
*file, and "type-mark" in the AFIT file.

*In production for local.generic.element, "subtype-indication
*.VarAsgn-expression." has been replaced by "type-mark .constraint." in this
*file, and "type-mark" in the AFIT file.

*In production for configuration-specification, "Identifier" (AFIT) has been
*replaced by "name" in this file in accordance with the LRM definition.

*In production for entity-aspect, "ENTITY Identifier" (AFIT) has been
*replaced by "ENTITY name" as per the LRM, but "CONFIGURATION name" (LRN)
*has been replaced by "CONFIGURATION Identifier", here, as well as in AFIT file.

*Missing Semicolon-ERR in production for disconnection.specification in AFIT
*file has been set right.

*In production for name, "indexed-name" includes "slice-name". Besides,
*name -> operator-symbol (operator overloading) has not been implemented.
*(causes 28 reduce/reduce conflicts).

*prefix -> function-call is not implemented. "function-call" is handled by
*" indexed-name".

*suffix -> operator-symbol is not implemented.

*indexed-name -> prefix (expression ,{ expression }) in LRM is implemented
*here as indexed-name -> name aggregate.

*In production for attribute_name, "prefix" (LRM) is replaced by "name",
sand optional '(' expression ')' in LRM is implemented as ".aggregate."
*here.

*"attribute-designator -> simple-name I RANGE" includes the keyword "RANGE"
*here. (used as an Identifier here).

*In production for primary, "function-call" is handled by "name", and '('
*expression I)' is handled by aggregate. Besides primary -> type-conversion
*is not implemented.

*literal -> Identifier is not implemented. (causes 99 reduce/reduce conflicts).

*Production for element-association contains "simple-expression direction
*simple- expression I name range- constraint" to compensate for change in
*production for "choice".

100

*choice -> discrete-range has been replaced by "choice -> simple-expression
*direction simple-expression I name range-constraint", since "discrete-range

*-> subtype-.indication I range" causes conflicts. Besides "choice ->
*simple.expression I simple-name" has been replaced by "choice ->
*simple.expression" since "simple.expression" contains "simple-name" in LRM
*definition.

*function-call is handled by "indexed-name"

*In production for qualified-expression, "typemark" has been replaced by
*"name", and "aggregate" includes '(I expression ')1.

*"type-conversion" has been replaced everywhere by its appropriate
*production.

*allocator -> NEW subtype-indication I 1EW qualified.expression has been
*replaced by "NEW qualified-expression" only, since "subtype-indication"
*causes conflicts.

*.AFTER__expression. -> I AFTER numeric-literal (AFIT) has been changed to

*".AFTER__expression. -> I AFTER expression" to reflect the LRM.

*In production for procedure.call-statement, "actual-parameter.part" has
*been ommitted. Its inclusion causes 1 shift/reduce, and 2 reduce/reduce
*conflicts. Here, procedure-call-statement has been implemented as "name
*SemicolonERR", since "name" includes "name aggregate".

*In production for component.instantiation-statement, "Identifier" (AFIT)

*has been replaced by "name" as per the LRM definition

*generate-statement is always labelled (LRM). So unlabelled.generate.statement
*(AFIT) is not implemented.

*Missing Semicolon-ERR in production for library-clause in AFIT file has
*been set right.

/*

** $Header: vhdl.y,v 4.0 87/11/30 15:58:01 rbratton Exp $<y-op>$<y.op>$

** $Log: vhdl.y,v $<y-op>$<y.op>$
* Revision 4.0 87/11/30 15:58:01 rbratton
* Check in of VHDL version 4.0 (version reported in thesis).

* Revision 3.2 87/11/04 16:10:48 rbratton
* Parser: corrected ranges and aggregate grammar. 1 shift/reduce
* conflict.
* Lex: Save before trying to implement alternate replacement
* characters 0! for 1, : for #, and % for ").

101

* Revision 3.1 87/11/01 11:28:31 rbratton
* Checkpoint save before trying to resolve "range" problems.

"* Revision 3.0 87/10/15 06:23:49 rbratton
"* Beta 3 Save. Implemented case/selected signal assignment and
"* with/use (using improved symbol table).

* Revision 2.3 87/10/11 15:06:54 rbratton
* Because of problems with passing floating point parameters, floating
* point has been removed--replaced with integer long. Hopefully, at a
* later time, the problems will be resolved.
* This is also a configuration save before adding WITH/USE capabilities
* to the analyzer.

* Revision 2.2 87/09/06 20:05:55 rbratton
* Checkpoint save before implementing improved symbol table.

"* Revision 2.1 87/09/01 11:26:46 rbratton
"* Implemented floating point notation. Uses float (32 bits?) rather than
"* double, but could possibly be changed later.

** Revision 2.0 87/08/29 09:43:08 rbratton
** Configuration save. For VHDL Release 2.0

** Revision 1.8 87/08/24 18:30:11 rbratton
** 1 shift/reduce conflict (default acceptable). Creates 487 cases.
** Changed value of NULL-SYMBOL from (struct sym.entry *) 0 to
** NULL (= 0). Still creates a NULL pointer, but does not generate
** warnings while compiling the resulting code (vhdlyacc.c).

** Revision 1.7 87/08/18 19:35:46 rbratton
** Corrected problems with signal assignment statement. Added labels to
** block statement and label symbol table entry.

** Revision 1.6 87/08/09 19:34:47 rbratton
** This version will NOT compile. It causes a "switch table overflow".
** The next version may be a reduced grammar to try to avoid this
** problem.

** Revision 1.5 87/07/18 19:14:53 rbratton

** checkpoint save: no conflicts

** Revision 1.4 87/07/17 18:21:23 rbratton
** checkpoint save: 9 shift/reduce conflicts
** Plus/Minus LeftParen

** Revision 1.3 87/07/17 17:57:50 rbratton
** checkpoint save: 13 shift/reduce conflicts
** Plus/Minus; Identifier

102

** Revision 1.2 87/07/15 10:07:55 rbratton
** checkpoint save

** Revision 1.1 87/06/21 09:24:24 rbratton
** Added some error recovery. More to follow.

** Revision 1.0 87/04/24 17:28:14 rbratton

** Initial revision

#include <malloc.h> /* !!'! For BISON CODE !!HH*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "comp.h"
#include "arch.h"
#include "misc.h"
#include "signal.h"
#include "process.h"
#include "ident.h"
#include "comp.in. h"
#include "portmap. h"
#include "assoc .h"
#include "thesis.h"
#include "mcode. h"
#include "entity.h"
#include "port.h"
#include "generate.h"

#include "vhdl.hpp"

int G-translate = TRUE; // Translate signal IDs to offsets if TRUE

extern int ANY-NAME; /* generic hash table index for error recovery */
int opl, op2, op3; /* temporary variables for op indices */

int is-childless; /* attribute of architecture body *[
int is-structure; /* attribute of architecture body */

%union {
int y-tok; /* token */
int y-op; /* Index to op table entry */
int y.hash; /* Index to hash table entry */
int y-str; /* Index to string storage */

103

/*SYIPTR y-sym;*/ /* Pointer to symbol table entry */
long y.val; /* Floating point number (32 bits) */
/* (also handles integer values) */
}

/* terminal symbols */

/* old terminal symbols - keep until removed from yacc code */

/*%token I&' */
%token Apostrophe
/*%token '('*/
/*`token RightParen*/

%token DoubleStar
/*%token Star */
/*%token 1+1 */
/*%token ¾' */
/*%token '-' */
%token VarAsgn
/**token ':' */
/*%token Semicolon */
%token LESym
%token Box
/*%token '<' */
%token Arrow
/*%token '=' */
%token GESym
/*%token '>' *[
%token Bar
%token NESym
/*%token '.' */
%token Slash
%token Identifier
%token DecimalInt
%token DecimalReal
%token Basedlnt
%token BasedReal
%token CharacterLit
%token StringLit
%token BitStringLit

%token ABS
%token ACCESS

%token AFTER
%token ALIAS
%token ALL
%token AND
%token ARCHITECTURE
%token ARRAY
%token ASSERT
%token ATTRIBUTE

104

%token BEGIN-
%token BIT
%token BLOCK
%token BODY
%token BUFFER
%token BUS
%token CASE
%token COMPONENT
%token CONFIGURATION
%token CONSTANT
%token DISCONNECT
%token DOWNTO

%token ELSE
%token ELSIF
%token END-
%token ENTITY
%token EXIT
%token FILE.
%token FOR
%token FUNCTION
%token GENERATE
%token GENERIC
%token GUARDED

%token IF
%token INOUT
%token IN
%token IS
%token LABEL
%token LIBRARY
%token LINKAGE
%token LOOP
%token MAP
%token MOD
%token NAND
%token NEW
%token NEXT
%token NOR
%token NOT
%token NULL.
%token OF

%token ON
%token OPE"
%token OR
%token OTHERS
%token OUT
%token PACKAGE
%token PORT
%token PROCEDURE
%token PROCESS
%token RANGE
%token RECORD

105

%token REGISTER
%token REM

%token REPORT
%token RETURN
%token SELECT
%token SEVERITY
Xtoken SIGNAL
%token SUBTYPE
%token THEN
%token TO
%token TRANSPORT
%token TYPE
%token UNITS

%token UNTIL
%token USE
%token VARIABLE
%token WAIT
%token WHEN
%token WHILE
%token WITH
%token XOR

** operator precedences and associativities listed in

** increasing precedence-

** Note: ABS and NOT have the same precedence as DoubleStar;
** yet, they associate to the right. The (non)token UNARYSIGN is used

** only to establish precedence for unary plus/minus signs- It does not
** have to be a declared token or have any other value other than its
** relative precedence value-

%left AND OR NAND NOR XOR
%left '=' NESym '<' LESym '>1 GESyz
%left '+' '-' 'a'
%left '*' Slash MOD REM
%right UNARYSIGN
%left DoubleStar
%right ABS NOT

#ifndef NDEBUG
#define TRACE(x,z) {if(yaccdebug)printf("#RULE %s : %s\n",x,z);}
#else
#define TRACE(xz)
#endif
%1

106

/*

* Start symbol = "design-file"
*/

%start design-file

/*
* Rules
*/

C r s n

/*
** Chapter 1: Design Entities
*/
/* 1_1 */

entity-declaration
ENTITY

{
}

Identifier
f

entity.addo;
}

IS
generic.clause

{
port.clearC);

}
port.clause

{
entity.add.portC);

}
entity-declarative.part
_BEGIN__ent ity-statement.part_
END-ERR
simple-name
Semicolon-ERR

[ENTITY error

/* 1_1_1 */
port-clause

/*empty*/

I port-clause

generic-clause
/*empty*/

I generic-clause

107

port-.clause
PORT

formal-port..list
RightParen..ERR
Semicolon-ERR

generic-.clause
GENERIC
'(,
formal-.generic-list
RightParen-ERR
Semicolon-.ERR

/*1.1.1.2*
I ormal-.port-l.ist

formal-.port...elemwnt
---formaalport-.element...

Ierror RightParen-.ERR

-- formalport...el..ent--..
/*empty*/

I formal-.port-element--..
Semicolon-.ERR
I orinal-.port-.eleznent

yyerrok;

I ormal-port...element
-SIGNAL-.

identifier-list

-mode-.
/* -.name-. causes conflict *
type-m.ark

-BUS-.

port..add-id-listo;

108

3VarAsgn--express ion..

-.SIGNAL-.
/*empty*/

ISIGNAL

-m.ode-
:/*empty*/
IIN

direct-.set(V-IN);

IOUT

direct-.setCV-.OUT);

IINOUT
IBUFFER
ILINKAGE

-BUS-
/*empty*/

IBUS

..VarAsgn-...expression..
/*empty*/

IVarAsgn
expression

/* 1111*
formal-.generic-.list

forlnal-.generic-.element
--- formal-..8neric..element--..

Ierror RightParen-.ERR

......ormal-generic-.element-...
/*empty*/
-- .forual-generic-o.lement-
Semicolon-.ERR
formal-generic...eleuent

yyerrok;

109

I

formal-generic-element
-CONSTANT-
identifier-list

-IN-

/* -name- causes conflict *1
type-mark
-constraint-
_VarAsgn__expression_

-CONSTANT-
/*empty*/

[CONSTANT

-IN-
/*empty*/

I IN

/* 1_12 *1
entity-declarative.part

: __entity-declarative_.tem__

__entity-declarative.item__
/*empty*/

S__entity-declarative-item__
entity.declarative.item

entity.declarative.item
alias-declaration
constant-declaration
type-declaration
subtype-declaration
attribute-declaration
attributespecification
subprogram-declaration
subprogram-body
signal-declaration
file-declaration
disconnection-specification

use-clause

110

/* 11..3

..BEGINlentity-.statement-.part-.
/ * empty *
IBEGIN-.
ent ity..statement..part

out ity-.statement-.part
* entity-statement--

-ent ity..statement-
*/*empty*/
I eutity-statement-
entity-.statement

ent ity-statement
*concurrent-.assert ion..statement
concurrent-procedure-.call

Iprocess-..statement /* NOT IN 7..2 *

/* 1..2 *
/* architecture bodies *

architecture-.body
k RCHITECTURE

Identifier

arch..addo);

OF
name /* entity name *

arch..nameo;

is

signal-cleax..listoC;
comp..clear-.listo);
comp-inst-list..clearoC;

architecture-declarative-part

BEGIN-
architecture-statement-part
END-ERR

-simple-name- /* architecture simple name

Semicolon-ERR

ARCHITECTURE error

/*

/* Architecture Declarative Part

architecture-declarative-part

--block-declarative-item--

--block-declarative-item--
/*empty*/

--block-declarative-item--
block-declarative-item

block-declarative-item

constant-declaration

signal-declaration

arch-add-signal-listo;

I
typedeclaration

subtype-declaration

attribute-declaration

component-declaration

arch-add-comp-listo;

I
alias-declaration

attribute-specification
configuration-specification

I subprogram-declaration

subprogram-body

file-declaration

disconnection-specification

use-clause

/* 122

/* Architecture Statement Part

architecture-statement-part

--concurrent-statement--

112

/* 1.3 *
conf igurat ion-.declarat ion

CONFIGURATION

Identifier

generate-.got-.top-.id~ident..get C)

OF
name /* Identifier */ /* entity-.name *

generate-.got-.top-..ntity-.idC ident..getC))

is
con! iguration..declarative-.part
block-conf igutrat ion
END-.ERR
-.s imple-name-.
Semicolon-ERR
ICONFIGURATION error

conf igurat ion-declarative-.part
--conf igurat ion-declarat ive-.item--..

.... conf iguration-.declarat ive-item-
/*empty*/

I -configuration-.declarative...item-
conf iguration-.declarat ive..item

con! iguration..declarative-.item
use-clause

Iattribute-.specification

/* 1..3.1 *
/* block configuration *
block-.configurat ion

FOR
block-specif icat ion

generate-.got-.top-.arch..id~ident-.geto);

-...use-.clause--..
-conf igurat ion-.item--

END-.ERR
FOR

113

Semicolon-ERR

__use-clause__

/*empty*/

I use-clause
__use-clause__

__configuration-item__
/*empty*/

I__configuration_item__
configuration-item

block-specification
label /* arch, block, generate */
opt-index-spec

/* I name causes conflict */

_opt-index-spec-
/*empty*/

I 'C'

index-specification
RightParenERR

index-specification
discrete-range

I expression

conf igurat ion-item
block-configuration

J component-configuration

/* 13_2 */

component-configuration
FOR
instantiation-list
0:'

name /* Identifier *1
_USE__binding-indication_

_block-configuration.
END-ERR
FOR

114

{

generate-ident.listC);
}

Semicolon-ERR

_USE__binding.indication_
/*empty*/

I USE
binding-indication
Semicolon-ERR

block.configuration
/*empty*/

I block-configuration

** Chapter 2: Subprograms
*1

I* 2_1 *I

subprogram-declarat ion
subprogram-specification
Semicolon-ERR

subprogram-specification
PROCEDURE
designator
procedure-parameter-list

[FUNCTION
designator
funct ion.paramet er-list

RETURN
type-mark

designator
Identifier

I operator-symbol

operator-symbol /* defined in LRM 2_1 *1
relational-operator

Iadding-operator
/* I sign */
I multiplying-operator
I logical-operator

115

Imiscellaneous-.operator

IStringLit

logical-operator :AND I OR I NAND INOR I bR

miscellaneous-.operator :DoubleSta~r IABS INOT

-.procedure-.paramet er-list-
/*empty*/

I 'c'dr-aaee-lmn
--procedure-.parameter..element-

RightParen-.ERR

error
RightParen-.ERR

--procedure..parameter-element--..
/*empty*/
-- procedure..parameter-element--..
Semicolon-.ERR
procedure-.parazneter...element

yyerrok;

procedure-parameter...element
-proceduxe-.parameter-.obj ect-.class...
identifier-list
Y.)

-procedure-.parameter..mode-.
/* -name- causes conflict *
type-.mark
-.constraint-
3VarAsgn...expression-

-.procedure..parameter-.obj ect-class-.
/*emapty*/

IVARIABLE
ICONSTANT

-procedure-.paramet er-node...
/*empty*/

IIN

116

1OUT
IINOUT

-..unct ion..parameter-.list-.
/*empty*/

function...paraaeter-elem.ent
-- function..parameter-o.lement--

ftightParen..ERR

error
RightParen-.EKR

--- f.unct ion..parameter..olement--
/*eapty*/

I ifunction..parameter-elemeut--..
Semicolon-.ERR
funct ion..paraaeter...eleuent

funct ion..parameter-.eleuent
-fnction...parameter...obj ect.class-

identifier-.list
):P

... unct ion..parameter-mode-.
type-.mark
-constraint-

3VarAsgri-express jon-.

.. function-.parameter-.obj ect-.class..
/*empty*/
ICONSTANT
ISIGNAL

-funct ion..parameter-mode..
/*empty*/
INI

/* 2.2 *
subprogram-declarative-.part

/*empty*/
Isubprogram-.declarative...part
subprogram-.declarat ive. item

117

yyerrok;
}

subprograadeclarat ive-item.
constant-declarat ion
variable-declaration
alias-declaration
type-declaration
subtype-declaration
attribute-declaration
attribute-specification
subprogram-declarat ion

subprogram-body
file-declaration
use-clause

/* 2_2 */
/* subprogram bodies */

subprogram-body

subprogram-specification
Is
subprogram.declarat ive-part
BEGIN-
sequence-ofstateements
END-_ERR
-designator-
Semicolon-ERR

-des ignator-
/*empty*/

I designator

/* Packages */

/* 2_5 */

packp ge.declarat ion
PACKAGE
Identifier
Is
package-declarat ive.part
END-ERR
simple-name

118

Semicolon-ERR
I PACKAGE
error

package-declarat ive-part
:_package-declarative-itera_

__package-declarative-item__
/*empty*/

I package-declarative-item__
package-declarative-item

package-declarative-item
type-declaration
subtype-declaration
attribute-declaration
constant-declaration
alias-declaration
subprogram-declaration
component-declaration
attribute-specification
signal-declaration
file-declaration
disconnection-specification
use-clause
error END-ERR
Semicolon-ERR

/* 2_6 */
/* package bodies */

package-body
PACKAGE
BODY
Identifier
is
package.body-declarative.part
END-ERR
simple-name
Semicolon-ERR

I PACKAGE
BODY
error

package-body-declarative-part
:_package-body-declarative-item._

119

__package-body-declarative.itemra__
/*empty*/

Spackage-body-declarativeitem__
package-body-declarative.item

package-body.declarat iveitem
subprogram-declarat ion
subprogram-body
type-declaration
subtype-declaration
constant-declaration
file-declaration
alias-declaration
use-clause

/*
** Chapter 3: Types
*1

/* 3_1 */

scalar-type-def inition
enumeration-type-definit ion

I range-type-definition /* includes integer and floating point */
[physical-type-definition

range-constraint
RANGE
range

range
attributename /* simple-expression simple-expression -> (attribute) name */

I simple-expression
direction
simple-expression

direction
TO

I DOWITO

/* 3_1_1_ */
enumerat ion.type.definition

120

enumerat ion-.liteoral
--- enumerat ion...literal-.
RightParen-.ERR

--- ...enumerat ion-lit oral..
/*empty*/
-- a~.nu-eration-.literal--

enumerat ion-.l iteral

yyerrok;

enumerat ion-.l iteral
Identifier
IChaxacterLit

/* 31.2 & 31..4
/* Integer and Floating Point types *

range-.type-definit ion
range-.constraint

/* 313 *
phys icai..type-.definition

range-.constraint
UNITS
base-.unit-.declarat ion
-s econdary-.unit-.declarat ion...

UNITS

-secondary-.unit-.declaxat ion--..
/*empty*/

I --. secondary-.unit-.declaration-...
secondary-.unit-.declarat ion

yyerrok;

base-.unit..declarat ion
Identifier

121

Semicolon-.ERR

uecondary-.unit-.declarat ion
Identifier

physical-.literal
Semicolon-ERR

physical-.literal1
-abstract-.literal-
name /* in LRPI: UNIT-.name *

.. abstract...literal-
/*empty*/

Iabstract-literal.

/* 3.2
compos it e-.type-.definition

array-.type-.def init ion
Irecord-type-.definition

1* 3.2..1
array-.type-definit ion

unconstrained-.array-.definition
Iconstrained..array..definition

unconstrained-axray-def inition
ARRAY
'C,
index-subtype-definit ion
--- index-.subtype..Aefinit ion--
RightParen...ERR
OF
subtype-indication

--1ndex-.subtype-.definition-
/*empty*/
-- ~..index-.subtype-definitio-

index..subtype-.definit ion

122

constrained-array-definition

ARRAY
index-constraint
OF
subtypeindication

index.subtype-definition
name /* type-mark - causes conflict */
RANGE
Box

index-constraint

discrete-range
__-discrete-range__
RightParenERR

--- discrete-range__
/*empty*/

I ___discrete.range__

discrete-range
{

yyerrok;
}

discrete-range
range /* includes attribute-name */

I name
range-constraint /* subtype-indication - causes conflict */

I type-mark /* type-mark causes 2 r/r conflicts - required for
louie's code */

/* 3_2_2 *2
record.type-definition

RECORD
element-declaration
__element-declaration__

END-ERR
RECORD

I RECORD
error
END-ERR
RECORD

123

__element-declaration__
/*empty*/

I __element-declaration__
element-declaration
{
yyerrok;
}

element-declaration
identifier-list

element.subtype.definition
Semicolon-ERR

/*
** identifier-list is used consistantly in definitions of new Identifiers,
** with one exception--IMPORTDIRECTIVE_ The IMPORT-DIRECTIVE expects to
** find all Identifiers declared at the local scope and it is an error if
** they are not- In all other cases, it is an error to have two Identifiers
** with the same name at the same level- (Overloading not implemented.)
** Therefore, identifier-list checks to see if the previous token was
** IMPORT-
** returns pointer to symbol table which has a list of identifier
** definitions connected by the "next" pointers-
*/
identifier-list

Identifier
{

ident-list-clearo);
ident.list-addC);
#ifdef _DB1_
puts("---. Enter-id-list()");

#endif
}

--- :identifier--

___identifier--
/*empty*/

Identifier
{

ident-list-addo;
#ifdef _DB1_
puts("---. Enter-id-list()");

#endif

}

124

--- _identifier--

element.subtype.definition

: subtype-indication

/* 33 */
/* Access Types */
access-type-definition

: ACCESS
subtype-indication

/* 331 */
/* Incomplete Type Declarations */
incomplete-type-declaration
: TYPE

Identifier
Semicolon-ERR

/* 34 */
/* File Types */
file-type-definition

: FILE-
OF
type-mark

/*

* Chapter 4: Declarations

/* 411 *1
type-declaration
: full-type-declaration
I incomplete-type-declaration

full-type-declaration
: TYPE

Identifier
Is
type-definition
Semicolon-ERR

125

type-definition
: scalar-type-definition
I composite-type-definition
I access.type-definition
I file-type-definition
I error Semicolon-ERR

/* 4_2 */
subtype-declaration
: SUBTYPE

Identifier
Is
subtype-indication

Semicolon-ERR

subtype-indication
: type-or-function-name

type-mark
-constraint-

I type-mark
-constraint-

-constraint-
: /*empty*/

I constraint

type-or.function-name
: expanded-name

expanded-name
: simple-name /* Identifier */
[* I STANDARD*/
I expanded-name /* was Identifier */

simple-name /* Identifier */
{

yyerrok;
}

/*1 ! !!!!!!!! CHANGED !! 'II!!!!!

! type-mark
expanded-name / * move to production-c !!! * /

126

/ * type-mark and constraint
will otherwise cause conflict * /

type-mark
: BIT

type-set(VBIT);
} /* Only allow BIT types at this time */

/*'!!!!!!!!!!!! END CHANGE !!!!!!!!!!*/

constraint
: range-constraint

I aggregate /* was: (discreterange _ __discrete.range__) */
/* index-constraint */

/* 4311 */
constant-declaration
: CONSTANT

identifier-list

subtype-indication
_VarAsgn__expression_
Semicolon-ERR

/* 4_3_1_2/

signal-declaration
: SIGNAL

{
ident-list-clearo;

}
identifier-.list

subtype-indication
signal-kind

signaladd.id-listC);
}

_VarAsgn__expression_
Semicolon-ERR

signal-kind
: /*empty*/

I signal-kind

127

signal-kind
REGISTER

I BUS

/* 4313 */
variable-declaration

VARIABLE
identifier-list

subtype-indication
_VarAsgn__expression_
Semicolon-ERR

/* 4_3_2 */
/* File Declarations */
file-declaration

FILE.
Identifier

subtype-indication
IS

-mode_
expression
Semicolon-ERR

/* 433 and 4_3_3.1 */
/* Interface Declaration and lists are interspersed

where they are actually used port, generic and parameter */

/* 4_332 */
/* Association lists */

association-list
association-element
---_association-element__

___association-element__
/*empty*/

association-element
___association-element_

yyerrok;
}

128

** (expression) is defined by aggregate as:
** C general.element.association) =>
** C OPEN.or.expression) =>
** C expression)
*/

association-element
: /* formal-part */ /* causes conflict */

name
{

assoclistadd.node();
assocleft(identgetC));

}
Arrow

mcode-clear-listo;
G-translate = FALSE; // Stop translating signals to offsets

}
/* actual-part */
OPEN-or.expression /* can be name also */
{

int signal-name;
mcode.c.pop-top();
signal-name = mcode-c-popo;
assoc.right(signal-name);
G-translate = TRUE; // Start translating signals to offsets

}
[/* actual-part */
OPENIor.expression /* can be name also *1

/* causes conflict
formal-part : name I name '(' name

actual-part : OPEN-or-expression I name '(' OPENIor.expression

*/
OPEN-or-expression
: OPEN
I expression

/* 434 */

alias-declaration
: ALIAS

Identifier

subtype-indication
IS

name

129

Semicolon-ERR

/* 44 *I
attribute-declaration

ATTRIBUTE
Identifier

type-mark
Semicolon-ERR

/* 45 */

component-declaration
COMPONENT
Identifier

{
comp-add-comp();

}
-GENERIC__local-generic-list_

_PORT__local-port-list_
{

comp-add-porto;
}

END-ERR

COMPONENT
Semicolon-ERR

_PORT__local-port-list_
/*empty*/

[PORT
{

port.clearo;
}

local-port-list

RightParen-ERR
Semicolon-ERR

local-port-list
: local-port-element

___local-port-element__

[error RightParenERR

--- local-port-element__

130

/*empty*/
-- ljocal-port-element__
Semiicolon-.ERR
local-.port-e.lement

local-port-o.lement
-.SIGNAL-.

ident-.list~c1.aro;

identifier-.list

-local-.port..mode-.
type-m.ark

-..constraint-.

..local-.port....ode-.
/*empty*/

IIN

direct..set(V_.II);

IOUT

direct-seat(V_..UT);

IINOUT
IBUFFER
ILINKAGE

-GENERIC-local-generic-.list..
/*empty*/
IGENERIC
P',
local-.generic..list
RightParen-.ERR
Semicolon-.ERR

local-generic-.l jet
local-generic-.element
..... local-.generic-.element--..

Ierror RightParen-.ERR

131

___local-generic-element__
/*empty*/

I __local-generic.element__
Semicolon-ERR
local-generic-element

local-generic-element

-CONSTANIT-
identifier-list

-IN-
type-mark
-constraint-

/*

** Chapter 5: Specifications
*1

/* 5_1 */

attribute-specification
ATTRIBUTE
attribute-designator
OF
entity-specification
Is
expression
Semicolon-ERR

entity-specification
: entity-name-list

).P

entity-class

entity-class
ENTITY

ARCHITECTURE
PACKAGE
FUNCTION
PROCEDURE
SUBTYPE
CONSTANT
VARIABLE
SIGNAL

132

i LABEL
i TYPE
I CONFIGURATION
I COMPONENT

entity-name.list
entity-designator
--- entity-designator__

I OTHERS
I ALL

---_entity-designator__
/*empty*/

I ___entity.designator__

entity-designator

entity-designator

simple-name
I operator-symbol

/* 5_2 */
configuration-specification

FOR
instantiation-list

{
ident-c.list-printC);

}

/* Identifier */
name
USE
binding-indication
Semicolon-ERR

I FOR
error
Semicolon-ERR

instantiation-list
identifier-list

I OTHERS
IALL
I error :1-
{

yyerrok;

133

}

/* _21 */
binding-indication

entity-aspect
generic-map.aspect
port.map.aspect

/* 5_2_1_1./

entity-aspect
ENTITY
/* Identifier */

/* name / * name causes 1 s/r conflict */
Identifier
{

generate-entity.name (ident._get C));
}

architecture-identifier
{

generate-arch.name(ident.get());

I CONFIGURATION
Identifier
/* name causes conflict */

{
printf("!!!! NOT IMPLEMENTED !!! %!! %d\n", ident.geto);

I
I OPEN

architecture-identifier
/*empty*/

I '('

simple-name
RightParenERR

/* entity-indication
library-name entity library-name

I OPEN

/* 5212
---_element-association__

/*empty*/

I ___element-association__

134

element-association
{
yyerrok;
}

/* 5_3 */
/* Disconnection-specification */
disconnection-specification

DISCONNECT
guarded-signalspecification
AFTER
expression
Semicolon-ERR

guarded-signal-specification
signal-list
):A

type-mark

/* 6_2_3 */
/* initialize-directive

INITIALIZE
type-mark
TO
expression
__waveform_
Semicolon-ERR
;*/

/*

** Chapter 6: Names

/* 6_1 */
/*

** According to the VHDL Test suite, library names are not used
** in expressions- Therefore, the choice "library-name" is removed-
** NEED TO CHECK THIS OUT!!! */
name

simple-name /* move to production.c */
I indexed-name /* includes "slice-name" */
I selected-name
I attribute-name /* not implemented: causes 2 reduce/reduce conflicts-
I operator-symbol overloading not implemented

causes reduce/reduce conflicts (28) */

135

pref ix
: name /*function call handled by indexed-name*/
/* I function-call
*/

/* 6_2 */
simple-name /* returns hash index */

Identifier

simple-name
/*empty*/

I simple-name

/* 6_3 */
selected-name

prefix
Sf,

suffix

suffix

simple-name
I CharacterLit
/* I operator-symbol */ /* handled by characterLit */
I ALL

/* 64 */
indexed-name /* also includes "slice-name" 6_5 */

name /* in LRM: prefix */
aggregate /* in LRN: '(' expression { ' expression } 1)3 .1

/* 6_6 */
attribute-name

name /* prefix causes 7 shift/reduce conflicts */
Apostrophe
attribute-designator
-aggregate- /* in LRN: '(' static-expression ')' */

-aggregate-
/*empty*/

I aggregate

136

attribute-.des ignator
simple-.name /* attribute simple..naime
IRANGE 1* somebody goofed! Keyword used as an identifier *

**Chapter 7 Expressions

/* 71 *
expression

Irelation--AD-relation--.

Irelation-N.AND-NaR-relation..
Irelation....XR...relation....

relat ion-AlD-relat ion--..
relation
AND
relation

mcode..addCH..AND);

Irelation...AND--..relation--..
AND
relation

mcode-.add(N-.AID);

relation
OR
relation

f
mcode-.add(M-OR);

Irelation--...R--..relation--..
OR
relation

mcode-.addCILOR);

137

relationNANDIOR__relation_
relation

I relation
NAND
relation

f
mcode-add(I_NAND);

}
I relation
NOR
relation

{
mcode-add(M_NOR);

}

relation__XOR__relation__
relation
XOR
relation

mcode-add(M_XOR);

I relation__XOR__relation__
XOR
relation

mcode.add(MXOR);
}

relation
simple-expression
_relop__simple.expression_

_relop__simple.expression_
/*empty*/

I relational-operator
simple-expression

** simple-expression ::= [sign] term { adding-operator term }
*/
simple-expression

- sign-term__add.op__term__

138

relationNANDNORRrelation_
relation

I relation
NAND
relation

{
mcode-add(M_NAND);

}
I relation

lOR
relation

{
mcodeadd(M_NOR);

}

relation__XOR__relation__
relation
XOR
relation

{
mcode-add(MXOR);

}
I relation__XOR__relation__

XOR
relation

{
mcodeadd(M_XOR);

}

relation
: simple-expression

_relop__simple.expression_

_relop__simple-expression_
: /*empty*/
I relational-operator

simple-expression

/*

** simple-expression ::= [sign] term { adding-operator term }
*/
simple-expression
: sign-term__addp-_term__

138

term
factor

I term
multiplying.operator
factor

yyerrok;

_s ign-toermadd-op__term-_
term %prec UNARYSIGN

I sign
term %prec UNARY-SIGN

I sign-term-_add-op__term__
adding-operator
term

factor
primary

.DoubleStar__primary_

I ABS
primary

I lOT
primary

// puts("- . ! mcode-add(NOT)");
meode-add (MNOT);

I

_DoubleStar__primary_
* /*empty*/

I DoubleStar
primary

primary
literal

{
mcodeadd(litget C));

}
I qualified-expression

/* I function-call
*/

] name /* name = simple-name = Identifier = enumeration-literal */

1

139

if(G-translate == TRUE) {
TP-arch arch.ptr = arch-get(arch-c-get-id());
TP.entity ent.ptr = entity-get(arch-ptr->name);
TP-port port.ptr = ent-ptr->port.list;
TP.port the-port = port-get(ident.geto), port-ptr);

mcodesadd(theport->number); // Offset of the port
}
else f

mcodeadd(identget C));
}
mcode.addC(HGET);

/* includes function-call */

I aggregate /*(expression) is included under aggregate*/
/* I type-conversion causes reduce/reduce conflicts
*/ I allocator

/* 721 */
/* logical operators embedded in expression */

/* 7.2_2 */
relat ional-operator

I NESym

I LESym

I GESym

/* 7_2_3 */
adding-operator

sign

/* 724 */
multiplying-operator

I Slash
I NOD

REM

140

/* 7_31 */
literal
: numeric-literal

i CharacterLit

• i enumeration-literal
* Causes 99 reduce/reduce conflicts with Id and CharLit_
* Covered under 'name'-

/ /* Identifier causes conflict */
i StringLit
I BitStringLit
I NULL-

numeric-literal
: abstract-literal
I abstract-literal /* physical-literal */

name /* Identifier */ /* in LRM: UNITname */

/* name in physical-literal causes conflict */

/* 73_2 */
aggregate

e ' - i
elementassociation
___element .associat ion__.

RightParenERR

element-association
: expression
[choice

__Barxchoice__
Arrow
expression

[simple-expression
direction /* because of production for "choice"

to avoid conflict */
simple-expression

I name
range-constraint

choices
: choice

__Bar__choice__

yyerrok;

141

}

__Bar__choice__
: /*empty*/
I Bar__choice__

Bar
choice

choice
: simple-expression /* includes simple-name */
I simple-expression

direction
simple-expression /* because of production for "discrete-range"
to avoid conflict */

I name
range-constraint

I OTHERS

/* 733 3/
/* function-call
: Identifier
actual-parameter-part

actual-parameter-part

association-list
RightParenERR
function-call handled by selected name */

/* _actual-parameter-part._

association-list
RightParenERR
* function-call handled by selected name */

/* 734 */
qualified-expression

name
Apostrophe
aggregate

* type-mark ' aggregate I type-mark ' (expression)
*/

142

/* 7_3_5 */

/* type-conversion causes reduce/reduce conflict

* Identifier type-mark
'(' aggregate
expression
RightParenERR

/* 736 */

allocator
: NEW
/* .subtype-indication

i NEW causes numerous reduce/reduce conflicts */
qualified-expression

/*

** Chapter 8: Sequential Statements

/* 8_0 */
sequence-ofstatements

: __sequential-statement__
I error END-ERR
{
yyerrok;
}
I error ELSIF
{
yyerrok;
}
I error ELSE
{
yyerrok;
}

I error WHEN
{

yyerrok;
}

__sequential-statement__
: /*empty*/

I sequential_statement

__sequential-statement_

143

sequential-statement

assertion-statement
signal-assignment-statement
variable-assignment-statement
if-statement
case-statement
loop-statement
next-statement
exit-statement

return-statement
null-statement
procedure-call-statement

wait-statement

/* 8_1 */
wait-statement
: WAIT

sensitivity-clause
condition-clause
timeout.clause
Semicolon-ERR

sensitivity-clause
: /*empty*/

I sensitivity-clause

condition-clause
: /*empty*/

I condition-clause

timeout-clause
: /*empty*/

I timeout-clause

sensitivity-clause
: ON

/* sensitivity-list */
signal-list

condition-clause
: UNTIL

expression

144

timeout-clause
: FOR

express ion

** returns SYNREF op tree indexes
*/

signal-list
: name
---name--

I OTHERS
IALL

---_name--

: /*empty*/

--- name--

name

/* 8_2 */

assert ion-statement
: ASSERT

expression
_REPORT__expression_
_SEVERITY__expression_
Semicolon-ERR

_REPORT__expression_
* /*empty*/

I REPORT
expression

_SEVERITY__expression_
: /*empty*/

I SEVERITY
expression

/* 83 */
signal-ass ignment-statenent

target
1

145

TP-,arch arch...ptr = arch-get(arch-.c-.get-.ido);
TP-.entity ent...ptr = entity-.get(arch-.ptr->name);
TP-.port port..ptr = ant-.ptr->port..list;
TP-port the-port = port..get(ident-geto), port-.ptr);

mcode-.add(the..port->number); // Offset of the port

LESym
-TRANSPORT-

{
G-.translate = TRUE; IIStart translating signals to offsets

I
waveform
Semicolon-.ERR

mcode-.add(M_.POST);

target
name
Iaggregate

waveform,
waveform-.element

v--aveform-.element--

--waveform-element-
/*empty*/

waveform-element
--- waveform-.eleuent-

/* 831 *
waveform-.eleinent

expression /* NULL can be arrived at through expression -literal *
...AFTER. express ion-

..AFTER--express ion-.
/*empty*/
IAFTER
expression /* numeric-.literal *1 /* in LRM: expression *

146

1* 84 *
variable-.assignment...statement
target
VarAsgn
expression
Semicolon-.ERR

1* 85 *
procedure-.call-statement

name /* name includes "name (association-list)"*
Semicolon-.ERR /* need to include actual-.parameter-.part

-causes conflict *

/* 88. *
if-statement

IF
condition
THEN
sequence-.oftstatements
-ELSIF-THEN--..seq-of-stmts....

.. ELSE-seq-.of-stmts...
END-.ERR
IF
Semicolon-.ERR

-ELSIF-THEN-seq-otstuts..
/*empty*/

IELSIF
condition
THEN
sequence-of..statements

{-LI-TE-sqo-tt-

yyerrok;

-.ELSE....seq..ofstmts..
/*empty*/

IELSE
sequence-.of-statements

yyerrok;

/* 57 *

147

case-.statement
CASE
expression
is
case-statement...alternative
-case-statement-.alternative--

END-.ERR
CASE
Semicolon-.ERR

-case-statement-.alternative.....
/*empty*/

I case-statement-alternative--
case-statement...alt ernat ive

yyerrok;

case-statement..alternat ive
WHEN
choices
Arrow
sequence-.oftstatements

/* 8..8

**To avoid shif t/reduce conf licts, def ine rules f or labeled/unlabeled loop
**statement

loop-.statement
:a-.label

unlabeled..loop...statement
Iunlabeled-loop-.statement

unlabeled-loop..statement
-.iteration-scheme_
LOOP
s equence-of..stateinents
END-.ERR
LOOP
-label-
Semicolon-.ERR

- it eration-.scheme..

148

/*empty*/
I iteration-scheme

iteration-scheme
WHILE
condition

I FOR
loop.parameter.specification

-label-
/*empty*/

I label

loop.parameter.specification
Identifier
IN
discrete-range

/* 8_9 */
next-statement

NEXT
-label-
_WHEN__condition_
Semicolon-ERR

WHENIcondition
/*empty*/

I WHEN
condition

/* 8_10 */
exit-statement

EXIT
-label-
_WHEN__condition_
Semicolon-ERR

/* 8_11 */

return-statement
RETURN
-expression-
Semicolon-ERR

149

-expression-
/*empty*/

I expression

/* 8_12 */
null-statement

NULL-
Semicolon-ERR

* chapter 9 - concurrent statements

/* 9_0 */
set-of-statements

:_concurrent-statement__
I error END-ERR

-_concurrent-statement-_
/*empty*/

I concurrent-statement
__concurrent-statement__

concurrent-statement
block-statement

I process-statement
{

#ifdef _DBI_
puts("---! arch-add-process()");
#endif
arch.add-processo); /* NOTE: Only one process is allowed!!! */

}

I concurrent-assertion-statement
I concurrent-signal-assignment-statement
I component-instantiation-statement

{

#ifdef _DBI_
puts(".....! arch-add-comp-inst-list(")°);

#endif
arch.add-compinstlist (;

}

I generate-statement
I concurrent-procedure-call

150

/*91*
block-.statement /***needs changing ****

a-.label
BLOCK
...guard..express ion-.
-generic-clause.map..ai3pect-.
-.poit-clause..uap-.aspect...
block-.declarat ive-part
BEGIN-.
set-.of-statements
END...ERR
BLOCK
-.label-
Semicolon-.ERR

I guard-expression-

guard-.expression

gadexpression

RightParen-.ERR

..generic-claus e-.map...aspect...
/*empty*/
Igeneric-clause
-.generic..map...aspect-.Semicolon-.

-.generic..map-aspect-Semicolon..

Igeneric-..ap..aspect
Semicolon-..ERR

..port-clause-map-.aspect-
/*empty*/
Iport-clause
..port-map..aspect-.Semicolon-.

..port-map..aspect..Semicolon-.

Iport..map..aspect
Semicolon-.ERR

151

block-.declaz-ative..pai-t
* -block-declarative..item--..

/* 9..2

**To avoid shift/reduce conflicts, define rules for labeled/unlabeled process
**statements-.

process-.statement
: a-.label
unlabele&..process-.statement
I unlabele&..process-statement

unlabeled-process-.statement
*PROCESS

#iI.def ..DBL-
puts("---! process-clearo)");
#endif
process-.clearo;

..sensitivity-.list-.
process..declarat ive-part
BEGIN-.

process-.clearo);
mcode-clear-.listo;

sequence-ofstatements

IIPlace END opcode in block
mcode..addCILEND);
process...add-ncodeo;
new-sim-block~arch-s.get-ido);
add-.code-.to-sirn-block(create..c.siu...processo),'ICORRECT-.CODE-TITLE"l);
create-all-hypoo);
finish-.sim-blocko;

END-ERR
PROCESS
-.label-
Semicolon-.ERR

.. sensitivity-.list-
*/*empty*/

152

I sensitivity-list

sensitivity-list

signal-list
RightParenERR

process-declarat ive.part
: process-declarative.item__

__process-declarative-item__
: /*empty*/

Sprocess-declarative-item__
process-declarative-item

{
yyerrok;
}

process-declarative-item
constant-declaration
variable-declaration
type-declaration
subtype-declaration
attribute-declaration
attribute-specification
subprogram-declaration
subprogram-body
file-declaration
alias-declaration
use-clause

/* 93 */
/*
** to avoid shift/reduce conflicts for concurrent-procedure.call
** define rules for labeled and unlabeled statements separately
*/

concurrent-procedure-call
: a-label

unlabeled-concurrent-procedure-call
Iunlabeled-concurrent-procedure-call

unlabeled-concurrent-procedure-call
: procedure-call-statement

153

/* 94 */
/*

** To avoid shift/reduce conflicts, define rules for labeled/unlabeled
** concurrent-assertion-statements_

** This creates an equivalent process statement which has a sensitivity
** list of the longest static prefix of each signal name appearing in
** the boolean expression of the assertion statement-

concurrent-assertion-statement
: a-label
unlabeled-concurrent-assertion-statement
I unlabeled-concurrent-assertion-statement

unlabeled-concurrent-assertion-statement
: assertion-statement

/* 95 */

** To avoid shift/reduce conflicts, define rules for labeled/unlabeled
** concurrent.signal.assignment.statements_

** This creates an equivalent process statement. See 8_2_4 of the LRN_

concurrent-signal-assignment-statement
: a-label

unlabeled-condit ional-signal-ass ignment
I unlabeled-conditional-signal-assignment

a-label
unlabeled.selected-signal-assignment

I unlabeled-selected_ signal-assignment

/* 951 */

unlabeled-conditional-signal-assignment
target
LESym
/* options */
-GUARDED-
-TRANSPORT-
/* conditional-waveforms */
__waveform__WHEN__condition__ELSE__
waveform

Semicolon-ERR

154

__waveform__WHEN__condition__ELSE__
: /*empty*/

I waveform__WHEN__condition__ELSE__
waveform
WHEN
expression
ELSE

/* 9_5_2 */
unlabeled-selected-s ignalass ignment
: WITH

expression
SELECT
target
LESym
/* options */
-GUARDED-
-TRANSPORT-
/* selected-waveforms */
waveform
WHEN
choices
_-_waveform__WHEN__choices_- /* changed from LRN for consistancy */

Semicolon-ERR

--- _waveform__WHEN__choices__
: /*empty*/

-___waveform_-WHEN__choices__

waveform
WHEN
choices

-GUARDED-
: /*empty*/

I GUARDED

-TRANSPORT-
: /*empty*/

[TRANSPORT

155

/* 9..6 */
component-.instantiation-statement
a-label
/* Identifier *
name

comp-.inst-..ist-.add..node~ident~.save..getoC);
comzp.inst-entity Cident..get 0);

-.generic..Aap-.aspect...

portmap-.list-.clearo;

..port-m.ap-.aspect-.

camp...inst-.portmap (portmap-.get 0);

Semicolon-ERRt

-port..map-aspect-
/*empty*/

Iport..map-.aspect

Port-m.ap-aspect

MAP

assoc-.list-.clear();

'C'/ was: PORT aggregate *
association-l.ist

portmap..list..add~nodeC assocjlist...get())
I

RightParen-ERR

-generic-map-aspect.
*/*empty*/
Igeneric-.map..aspect

generic-.map-.aspect

GENERIC
MAP

156

association-list
RightParenERR

/* 97 */

** To avoid shift/reduce conflicts, define labeled/unlabeled generate
** statements-

generate-statement
: a-label
unlabeled-generate-statement
/* I unlabeled-generate.statement

unlabeled-generate.statement
: generation-scheme

GENERATE
setQof-statements
END-ERR
GENERATE

-label-
Semicolon-ERR

generation-scheme

: FOR
generate.parameter-specification

I IF
condition

generate.parameter.specification
: Identifier

IN
discrete-range

condition
: expression

** label declaration

a-label
: label

identsaveo; /* Save ident; case of 2 idents before parsed */
}

157

label
: Identifier

/*
** Chapter 10: Scope and Visibility
*/

/* 104 */
use-clause
: USE

selected-name /* package simple name */
___selected-name__
Semi colon-ERR

___selected-name__
: /*empty*/

I ___selected-name__

selected-name

/*

** Design Units and Their Analysis
*/

/* 11_1 */
design-file
: design-unit

design-unit__

__design.unit__
: /*empty*/

I design-unit
__design.unit__

design-unit

: context-clause
library-unit

library-unit

: primary-unit
I secondary-unit

158

J error

primary-unit
: entity-declaration
I configuration-declaration
I package-declaration

secondary-unit
: architecture-body

J package-body

/* Design Libraries */
/* 112 */

library-clause
: LIBRARY

logical-name-list
Semicolon-ERR

logical-name.list
: Identifier

__-logical-name__

___ logical-name__

: /*empty*/

I ___logicalname__

Identifier

/* 113 *f
context-clause
: context-item__

__context-item__
: /*empty*/

Scontext-item__
context-item

context-item
: library-clause

I use-clause

159

/* A-4 */
/* abstract-literal */
/*

** Normally, the grammar for abstract literal would be found here- It
** has been moved to the end of this file. There you will find an
** explanation.
*/

** Error recovery non-terminals

/*

*Make ';', ')', and 'end' significant for error recovery-
*/

RightParenERR

{
yyerrok;

}

Semicolon-ERR

{
yyerrok;

}

END-ERR
: END-

yyerrok;
I

** In order to implement floating point notation, it was necessary to
** declare the types of the parameters for 'abstract -literal-real' and
** 'abstract-literal-int', as well as the return type for 'abstract-literal'_
** But if you do this, then yacc demands that all following grammar rules
** be similarily typed- Therefore, this special case was made the last
** rule in the grammar- This will cause the compiler to complain about
** "struct/union or struct/union pointer required", but the source code
** produced by yacc is correct-
*/
abstract-literal

160

*DecimalInt {/*puts("----I found decimal int");*/}
IDecimalReal (puts(" --- ! found decimal real");}
IBasedlnt (puts("---! found based int");}
IBasedleal {putsC"---! found based real");)

int yyerror~char *s)

printfC"YYError: %s\n", s);

161

D.3 UV.LEX

M*

UV . LEX

This file contains the FLEX code for recognizing the VHDL tokens

#include <stdio .h>
#include <conio.h>
*include <string.h
#include <io.h>
#include "ident .h'
#include 'thesis .ho'

#include "uv-tab.h
#include <alloc .h>

char *strip-underscoreC);
extern char YACC-STR-.LITEJ;
extern FILE *infile;

#undef YY-IIPUT
#define YY..JNPUT(buf ,result .max-.size)\

mnt c getc~infile);\
result Cc==EOF) ? YYLNULL (buf[OJ=c,1);\

A [aAJ
B [bB)
C [cc]
D [dDl
E [E1E
F [fF]
G EgG)
H EhH1
I (iI)
3 [pJJ
K EkKI
L [IL3
m [mM]
N [nNI
0 [003
P EpPI

Q EqQJ
Rt ErR)
S ES)]
T [tTJ

162

U EU)I
v [vY)

X [x~l

Y [yY)

digit (0-9) [0-9...)*
intlit {digit}
integer {intlit}
string PI1 (E\nL\t'i I C")) '
comment -- E'\n) *
Ws [\t)+
nl \

varasgn
doublestar[*)

gesym

nesym
arrow =

{comment} {if(is-.flag-.setCPRINT-COMK)) puts~yytext) ;}

putsC"SOMETHING IS RONG");
return Apostrophe;

{doublestar}
return DoubleStar;

I

{varasgri} f
return VarAsgn;

I
{lesym} f

return LESym;
I

return BIT;
I

return Box;
I
farrow)

return Arrow;

{gesyzs}
return GESym;

163

{B}{A}R}
return Bar;

I
{nesymn}

return lESym;

return Slash;

{I}{digit}{digit}{digit} f
/*printf(C Lexxed I %slI\n', yytext) ; *
ident-.set~yytext);
return Identifier;

{intlit} f
lit-.set~yytext);
return Decimallnt;

I

return DecimalReal;
I

return Basedlnt;
I

return BasedReal;
I

return CharacterLit;
I

return StringLit;
I

return BitStringLit;

return ABS;

return ACCESS;
I

return AFTER;
I

return ALIAS;

return ALL;

164

{A}{f}{D} {
return AND;

}
{A}{R}{C}{H}{I}{T}{E}{C}{T{U}{R}{E} {

return ARCHITECTURE;
}
{A}{R}{R}{A}{Y} {

return A2RAY;

}
{A}{S}{S}{E}{R}{T} {

return ASSERT;

}
{A}{T}{T}{R}{I}{B}{U}{T}{E} {

return ATTRIBUTE;

}
{B}{E}{G}{I}{N} {

return BEGIN.;
}
{B}{L}{O}{C}{K} {

return BLOCK;
}
{B}{O}{D}{Y} {

return BODY;

}
{B}{U}{F}{F}{E}{R} {

return BUFFER;

{B}{U}fS} {
return BUS;

{C){A}{S}{E} {
return CASE;

}
{C}{O}fM}{P}{0}{N}{E}{N}{T} {

return COMPONENT;
}
{C}{O}{N}{F}{I}{G}{U}{R}{A}{T}{I}{O}{N} {

return CONFIGURATION;
}
{C}{O}{N}{S}{T}{A}{N}{T} {

return CONSTANT;
}
{D}{I}{S}{C}{0}{N}{N}{E}{C}{T} {

return DISCONNECT;
}
{D}{O}{W}{N}{T}{O} {

return DOWNTO;
}
{E}{L}{S}{E} {

return ELSE;
}

165

{E}{L}{S}{I}{F} {
return ELSIF;

}

{E}{lN}{D} {
return END-;

}
{E}{N}{T}{I}{T}{Y} {

return ENTITY;

{E}{X}{I}{T} {
return EXIT;

}
{F}{I}{L}{E} {

return FILE-;
}
{F}{O}{R} {

return FOR;
}
{F}{U}{N}{C}{T}{I}{O}{N} {

return FUNCTION;
}
{G}{E}{N}{E}{R}{A}{T}{E} {

return GENERATE;
}
{G}{E}{N}{E}{R}{I}{C} {

return GENERIC;
}
{G}{U}{A}{R}{D}{E}{D} {

return GUARDED;

}
{I}{F} {

return IF;
}
{I}{N}{O}{U}{T} {

return INOUT;

}
{I}{N} {

return IN;
}
{I}{S} {

return IS;
}
{L}{A}{B}{E}{L} {

return LABEL;
}
{L}{I}{B}{R}{A}{R}{Y} {

return LIBRARY;
}
{L}{I}{N}{K}{A){G}{E} {

return LINKAGE;
}

166

{L}{O}{O}{P} {
return LOOP;

}
{M}{A}{P} {

return MAP;

}
{N}{O}{D} {

return MOD;
}
{N}{A}{N}{D} {

return NAND;

}
{N}{E}{W} {

return NEW;
}
{N}{E}{X}{T} {

return NEXT;

}
{N}{O}{R} {

return NOR;
}
{N}{O}{T} {

return NOT;

}
{N}{U}{L}{L} {

return NULL-;
}
{O}{F} {

return OF;

I
{o}{N} {

return ON;

I
{O}{P}{E}{N} {

return OPEN;

I
{O}{R} {

return OR;

I
{O}{fT{,H}{E}{R}{S} {

return OTHERS;
I
{O}{U}{T} {

return OUT;
I
{P){A}{C}{K}{A}{G}{E} {

return PACKAGE;
I
{P}{O}{R}{T} {

return PORT;

167

{P}{R}{O}{C}{E}{D}{U}{R}{E} {
return PROCEDURE;

}
{P}{R}{O}{C}{E}{S}{S} {

return PROCESS;

}
{R}{A}{I}{G}{E} {

return RAIGE;
}
{R}{EI{C}{O}{R}{D} {

return RECORD;
}
{R}{E}{G}{I}{S}{T}{E}{R} {

return REGISTER;
}
{R}{E}{M} {

return REM;
}
{R}{E}{P}{O}{R}{T} {

return REPORT;
}
{R}{E}{T}{U}{R}{I} {

return RETURN;

}
{S}E}LME}{Ec}{T} {

return SELECT;
}
{S}{E}{V}{E}{R}{I}{T}{Y} {

return SEVERITY;

}
{S}{I}{G}{N}{A}{L} {

return SIGNAL;
}
{S}{U}{B}{T}{Y}{P}{E} {

return SUBTYPE;
}

{T}{H}{E}{N} {
return THEN;

}
{T}{O} {

return TO;

}
{T}{R}{A}{I}{S}{P}{O}{R}{T} {

return TRANSPORT;
}
{T}{Y}{P}{E} {

return TYPE;
}
{U}{I}{I}{T}{S} {

return UNITS;

}

168

{U}{I}{T}{I}{L} {
return UNTIL;

}

{U}{S}{E} {
return USE;

}

{V}{A}{R}{I}{A}{B}{L}{E} {
return VARIABLE;

}
{W}{A}{I}{T} {

return WAIT;
}
{W}{H}{E}{I} {

return WHEN;
}
{W}{H}{I}{L}{E} {

return WHILE;
}
{W}{I}{T}{H} {

return WITH;
}
{x}{o}{R} {

return XOR;
}
{U}{I}{A}{R}{Y}{S}{I}{G}{N} {

return UNARY-SIGN;
}
{nl} {

/* extern int lineno; */
/* lineno++;*/
/*puts("End of Line.");*/
}

return yytext [0];

169

Appendix E. Parser Source Code

E.1 Overview

These modules are tightly linked to the UV module described in Appendix A.1. As soon as

a VHDL construct has been parsed, the associated code in the UV module calls the routines in

one of the following modules. VHDL constructs that consist of other VHDL objects reference the

routines of the sub-object's module.

All routines for the parsed object are in a separate module. In general, each module has an

init function, functions to set the values of the object, and a function to return the object. In

addition, there are also functions to print the object's value to the screen.

E.2 ARCH.H
/*

VHDL PARSER

File: ARCH.H

Date: 7 July 1992

This module handles the creation of an ARCHITECTURE by the
VHDL parser. These routines are called by the BISON program.

Routines:

arch.clearo) -- Clear current arch settings
arch-id() -- Add current identitier to arch

archname() -- Add current ident as arch name
arch.add-signal-list() -- Add current signal list to current arch
arch.print(ent) -- Print specified architecture

/* --
#ifndef __arch-h__
#define __arch-h__ 1

#ifndef -- ident-h__
#include "ident .h"
#endif

#ifndef __signal-h__

170

#include "signal.h"
#endif

#ifndef __comp.h__
#include "comp.h"
#endif

#ifndef __comp-in.h__
#include "comp-in.h"
#endif

#ifndef __process.h__
#include "process.h"
#endif
/*- -- *
typedef struct S-arch {

T-ident id; /* Instance of Arch */
T-ident name; /* entity for arch */
TP.signal signal-list; /* List of local signals */
TP-comp comp.list; /* List of local comp declarations *1
TP.comp.inst comp-inst-list; /* List of comp instantiations */
T-process process; /* the ONE process in the architecture */
struct S-arch *next;

} Tarch;

/* arch node pointer */
typedef T-arch * TP.arch;

/* --

/* prototypes */

void arch-clear(void);
void arch-add(void);
void arch-name(void);
void arch-add.signal-list(void);
void arch.add.comp.list(void);
void arch-add.comp.inst.list(void);
void arch.add.process(void);
void arch.c.list.print(void);

void arch-list.print(TP-arch list);
void arch-print(TParch list);
int arch.c-get-id(void);
TP-arch arch-get(int id);

/* -- *
#endif

171

E.3 ARCH.CPP
/*

VHDL PARSER

File: ARCH.C

Date: 7 July 1992

This module handles the creation of an ARCHITECTURE by the
VHDL parser. These routines are called by the BISON program.

*i

#include <stdio.h>
#include <stdlib.h>

#include <assert.h>
#include <malloc.h>
#include <string.h>
#include "thesis.h"
#include "arch.h"
/* --
/* Current arch being created */

static TP-arch current-arch-list;

/* *--
void archclear(void)
{

current-arch-list = KULL;
}

void archadd(void)
{

TP-arch new-node;

if((new-node = (TP-arch)(malloc(sizeof(T.arch)))) == NULL) {
yyerror("Out of memory in ARCHADD()");
exit(129);

}
new-node->id = ident-geto);
new.node->signal-list = NULL;
new-node->comp-list = NULL;
new-node->comp-inst-list = NULL;
new node->process = NULL-PROCESS;
new-node->next = current.arch-list;
current-arch-list = new-node;

1/ Add name to architecture
void arch-name(void)
{

current-arch-list->name = ident.getC);

172

void arch-.add...signal..list~void)

current-arch-.list->signal..list =signal~geto;

void arch-.add-comp-.list Cvoid)
f

current -arch-1 .ist ->comp...list = couip..geto;

void arch-.add-comp-.inst..list Cvoid)

current-.axch-list->comp-inst..list =comp..inst..list-.geto;

void arch-add-process Cvoid)
f

current..arch...list->process = process..getoC;
I

mnt arch-c-.get..Ad~void)
f

return current-arch-list->id;
I

void arch-c-ist..print(void)

arch-print Ccurrent~arch..list);

void arch..list-.printCTP..arch list)

if(list == NULL) f
putsC'Empty arch signal list");

else f
while~list != NULL){

arch-~print (list);
list = list->next;

void arch-.printCTP-arch node)

if (node ==NULL){
putsC"Empty arch signal node");

else{

173

printf("Arch id: ");
ident-print(&(node->id));

printf(" Name: ");
ident.print(&(node->name));
puts(""..) ;
puts("Arch signal list");
signal-printC node->signal_list);
putsC"Arch comp list");
comp.print(node->comp.list);

puts("Arch component instantiation list");
comp-inst.list-printC node->compinstlist);
puts("Arch process") ;
process-print(&(node->process));

/1 Return pointer to arch specified by ID
II Return NULL if not found
TP-arch arch.get(int id)
{

TP-arch ptr = currentarchlist;
while(ptr != NULL ft ptr->id != id) {

ptr = ptr->next;
}
assert(ptr != NULL);
return ptr;

* --

174

E.4 ASSOC.H

VHDL PARSER

File: ASSOC.H

Date: 9 July 1992

This module handles the creation of a assoc's list of
input/output signals. Theses functions are called by the BISON
program.

Routines:

assoc.clear() -- Clear current assoc list
assocadd.idC) -- Add current ident to current assoc list !!! NOT USED
assoc-add-id-listo) -- Add current identlist to current assoc list
assoc-print(list) -- Print supplied assoc list. If CURRENTLIST,

print out the current list.
assoc-geto) -- Get pointer to current list.

/* ---
#ifndef __assoc-h__
#define __assoc-h__ 1

#ifndef __ident-h__
#include "ident.h"
#endif

/* assoc signal node */
typedef struct S-assoc {

T-ident left;
T-ident right;
struct S-assoc *next;

} T.assoc;

/* assoc signal node pointer */
typedef T-assoc * TP.assoc;

/*--*

/* prototypes */
void assoc-list-clear(void);
void assoc.list.free(TP-assoc list);
void assoc.list.add.node(void);
void assoc-left(T-ident left);
void assoc-right(T.ident right);
void assoc-list-print(TP-assoc list);
TP-assoc assoc.list.get(void);
/* ---

175

#endif

176

E.5 ASSOC.CPP
/,

VHDL PARSER

File: ASSOC.C

Date: 9 July 1992

This module handles the creation of a assoc's list of
input/output signals. Theses functions are called by the BISON
program.

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "thesis.h"
#include "assoc.h"
#include "misc.h"
/* /--
/* Storage for current assoc signal list */

static TP-assoc assoc-signal-list = NULL;

* --
void assoc-list-clear(void)
f

assoc-signallist = NULL;
I

void assoc-list-free(TP-assoc list)
{

TP-assoc ptr;

if(list == CURRENT-LIST) {
list assocsignal-list;

}
while(list != NULL) {

ptr = list->next;
free(list);
list = ptr;

}

void assoclist-add-node(void)
{

TP-assoc new-node;

if((new-node = (TP-assoc)(malloc(sizeof(T-assoc)))) NULL) {
yyerror("Out of memory in assocADDID()");

177

exit(1Oi);
I
new..node->left = -1;
new-node->right = -1;
new..node->next =assoc-signal-list;
assoc-signal-list =new-.node;

void assoc-.left(TLident left)

assoc-.signal-list->left =left;
I

void assoc-rightCT-ident right)

assoc..signal-list->right =right;

void assoc-list..printCTP..assoc list)

if (list ==NULL){
putsQ'Empty association list");

I
else{

if (list == CURRENT-.LIST){
puts("Found CL; printing current list:");
list = assoc-.signal-.list;

I
while~list !=NULL){

printf("%d => %Id\n",
list->left ,list->right);

list = list->next;

TP-assoc assoc-list-get~void)

return assoc..signal-list;

I
/*--*

178

E.6 COMP.H

VHDL PARSER

File: COMP.H

Date: 9 July 1992

This module handles the identifiers encountered by BISON.

Routines:

comp-clearo) - Clear current comp
comp-add-ido) - Add ident to comp !!!not used
comp-add-id-listo) - Add current ident list to current comp
comp-printo) - Print comp data
comp.get() - Get current comp data

/* *--
#ifndef __comp-h__
#define __comp.h__ 1

#ifndef __ident-h__
#include "ident.h"
#endif

#ifndef __port_h__
#include "port.h"
#endif

/* comp signal node */
typedef struct S.comp C

T-ident id;
TP-port port;
struct S-comp *next;-

} T-comp;

/* comp signal node pointer */
typedef T-comp * TP.comp;

/* ---

/* prototypes */
void comp.clear-list(void);
void comp-add-comp(void);
void comp.add.port(void);
void comp-print(TP.comp list);
TP-comp comp.get(void);
TP.comp comp.get(int name, TP_comp ptr);
/* --

179

#eiudif

180

E. 7 COMP. CPP

VHDL PARSER

File: CONP.C

Date: 2 July 1992

This module handles the creation of a comp's list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdio.h>
#include <stdlib. h>
#include <malloc.h>
#include "thesis.h"
#include "comp.h"
#include "misc.h"
/ --
/* Storage for current comp signal list */

static TP.comp comp.list = NULL;

/* Storage for current comp */
static T-comp current-comp;

/* /---
void comp-clear-list(void)
{

comp-list = NULL;
}

void comp.add-comp(void)
{

TP.comp new-node;

if((new-node = (TP-comp)(malloc(sizeof(T-comp)))) =: NULL) {
yyerror("Out of memory in compADDIDo");
exit(102);

}
newnode->id = ident.geto;
new-node->next = comp.list;
comp.list = new-node;

void comp.add.port (void)
{

comp-list->port = port.geto);
}

181

void coup-print(TP-comp list)
{

if(list == NULL) {
puts("Empty comp signal list");

}
else {

if(list == CURRENT-LIST) {
puts("Found CL; printing current list:");
list = comp.list;

}
while(list != NULL) {

printf("Name: ");
ident-print(C (list->id));
puts("");
printf("PorL list:\n");
port.print((list->port));
list = list->next;

}
}

TP-comp comp-get(void)
{

return comp.list;
}

// Return pointer to entity specified by ID
// Return NULL if not found
TP.comp comp-get(int id, TP.comp ptr)
{

while(ptr != NULL At ptr->id != id) {
ptr = ptr->next;

}
return ptr;

}
--

182

E.8 COMPIN.H
/*

VHDL PARSER

File: COMPIN.H

Date: 9 July 1992

This module handles the creation of a comp-inst's list of
input/output signals. Theses functions are called by the BISON
program.

Routines:

comp-inst-clear() -- Clear current comp.inst list
comp-inst-addid() -- Add current ident to current comp-inst list
comp-inst.add-id-listo) -- Add current ident-list to current comp.inst list
comp-inst-print(list) -- Print supplied comp.inst list. If CURRENT_LIST,

print out the current list.
comp-inst-get() -- Get pointer to current list.

/* ---
#ifndef __comp-in-h__
#define __comp.in.h__ I

#ifndef __ident-h__
#include "ident.h"
#endif

#ifndef __portmap-h__
#include "portmap.h"
#endif

/* comp.inst signal node *1
typedef struct S.comp-inst {

T-ident name;
T-ident entity;
TP.portmap portmap;
struct S.comp.inst *next;

} T.comp.inst;

/* comp-inst signal node pointer */
typedef T.comp.inst * TP.comp.inst;

I * -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

/* prototypes */
void comp-inst-list.clear(void);
void comp-inst-listfree(TP-comp-inst list);
void comp-inst-list-add_node(T-ident name);

183

void comp-.inst-e.ntity(T..jdent entity);
void comp-inst-.portmap(TP-.portmap portmap);
void comp-inst-.list-.printCTP-.comp-inst list);
TP..comp-inst comp..inst..list-get (void);
TP-comp-.inst comp...inst-.get~int id, TP..comp-.inst ptr);

#endif

184

E. 9 COMPIN. CPP

VHDL PARSER

File: COMPIN.C

Date: 9 July 1992

This module handles the creation of a comp.inst's list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdiob.h>
#include <stdlib.h>

#include <malloc.h>
#include "thesis.h"
#include "comp.in.h"
#include "misc.h"
/* --
/* Storage for current comp.inst signal list */

static TP-comp.inst comp-inst.list = NULL;

/* .---
void comp.inst-listclear(void)
{

comp.inst-list = NULL;
}

void comp.inst-listfree(TP.comp.inst list)
{

TP-comp.inst ptr;

if(list == CURRENT-LIST) {
list = comp-inst.list;

}
while(list != NULL) {

ptr = list->next;
free(list);
list = ptr;

}

void comp-inst.list.add.node(T.ident name)
{

TP.comp.inst neownode;

if((new-node = (TP-comp-inst)(malloc(sizeofC(T.comp.inst)))) NULL) {
yyerror("Out of memory in comp.instADDIDo");

185

exit(1O3);

nev..node->name = name;
new-.node->next = comp-inst~list;
comp-.inst-.list =new-.node;

void comp-.inst...entityCT..ident entity)

f
comp..inst..list->entity = entity;

I

void comp-inst-.portmapCTP-.portmap portmap)
f

comp-inst..list->portmap = portmap;
I

void comp-inst-list-print(TP-.comp-.inst list)

if (list ==NULL){
puts ("Empty comp-instiation list");

else{
if (list ==CUR.RENT-.LIST){

putsC"Found CL; printing current component list:");
list = comp..inst..list;

I
while~list != NULL){

printf("Name: %2d Entity: %2d\n'.
list->name, list->entity);

putsC'Port map list:");
portmap-list-print Clist->portmap);
list = list->next;

TP..comp-.inst comp..inst..list-.get (void)

return comp-inst-list;

/--*
//Return pointer to comp-.inst specified by name in supplied comp-.inst list
//Return NULL if not found

TP..comp-.inst comp-.inst..get(int name, TP..comp-inst ptr)

while(ptr !=NULL kk ptr->name != name){
ptr =ptr->next;

return ptr;

186

1* ---

187

E.IO MISC.CPP
/*

VHEý. PARSER

File: NISC.C

Date: 2 July 1992

Miscellaneous routines for functions called from BISON

*/

#include "thesis. h

#include "misc.h"
/* -- *
/* Storage for current values */

static int current.port-direction;
static int current.type-mark;

/* *--
/* Routines for handling current port signal direction */

void directset(int newdir)
{

currentport_direction = new-dir;
}

int direct.get()
{

return current._port.direct ion;
}
/* - --
/* Routines for handling current type mark */

void type-set(int new-type)
{

current.type-mark = new-type;
}

int type.getC)
{

return current.type.mark;

}
/* /--

188

E.11 ENTITY.H

VHDL PARSER

File: ENTITY.H

Date: 2 July 1992

This module handles the creation of an ENTITY by the
VHDL parser. These routines are called by the BISON program.

Routines:

entity-clearo) -- Clear current entity settings
entity-idC) -- Add current identitier to entity
entity-add-port() - Add current port list to entity

entity-print() - Print out specified entity - NULL prints
out current entity

*/

/* *--
#ifndef __entity.h__
#define __entity-h__ 1

#ifndef __ident-h__
#include "ident.h"
#endif

#ifndef __port-h__
#include "port.h"
#endif
* --

typedef struct S.entity f
T-ident id;
TP-port portlist;
struct S.entity *next;

} T.entity;

/* Entity node pointer */
typedef T.entity * TP-entity;

* *---
/* prototypes */

void entity-list-clear(void);
void entity-add(void);
void entity-add-port(void);
void entity-c.list.print(void);
void entity-list-print(TP-entity list);
void entity-print(TPentity list);

189

TP-entity entity.get(int id);

* ---

#endif

190

E.12 ENTITY.CPP
/*

VHDL PARSER

Ff',: ENTITY.C

Date: 2 July 1992

This nodule handles the creation of an ENTITY by the
VHDL parser. Thes' routines are called by the BISON program.

*/
#include <stdio.h>
#include <stc.ib.h>
#include <assert.h>
#include <alloc.h>
#include <string.h>
#include "thesis.h"
#include "entity.h"
* ---

/* Current entity being created */

// static T.entity current-entity;
static TP.entity current.entity.list;
/* *---
void entity-list.clear(void)
{

current-entity-list = NULL;
}

void entity-add(void)
{

TP.entity new.node;

if((new.node = (TP-entity)(malloc(sizeof(Tentity)))) == NULL) {
yyerror("Out of memory in EPrITYADDC)");
exit(104);

}
new-node->id = ident-get();
new.node->port-list = SULL;
new-node->next = current-entity-list;
current-entity-list = new_node;

void entity.add-port(void)

current-entity-list->port-list = port-geto;

void entity-c-list.print(void)
{

191

entity.print(current-entity.list);
}
void entity.list-print(TPentity list)
{

if(list == NULL) {

puts("Empty entity signal list");

}
else {

while(list != NULL) {
entity-print(list);
list = list->next;

},
}

void entity-print(TP-entity list)
{

if(list == NULL) {
puts("Empty entity signal list");

}
else {

printf('Entity id: ";
ident-print(&(list->id));
puts(C".);
puts("Entity signal list");

port-print(list->port-list);
puts(" ----------------------------- 0');

}

// Return pointer to entity specified by ID
1/ Return NULL if not found
TP-entity entity-get(int id)
{

TP.entity ptr = current..entity-list;
while(ptr != NULL && ptr->id != id) {

ptr = ptr->next;
}
assert(ptr != lULL);

return ptr;

/* --------------------------------------- /

192

E.13 GENERATE.H
//

//

// File: GENERATE.H
//
//
// 23 July 1992
/-

#ifndef __generate.h__
#define __generate-h__

/* /---
/* /---
/* Prototypes */
void generate-entity-name(int entity-name);
void generate-arch-name(int arch-id);
void generate.identilist(void);

generate.got.top.id(int top.id);
generate-got-topaentity-id(int id);
generate-got-top-arch-id(int id);

#endif

193

E.14 GENERATE.CPP
//
/-

II File: GENERATE.C
//
//

II 22 July 1992
//

/[This module handles the mcode generation for Calvin.
// ---

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include "thesis.h"
#include "entity.h"
#include "arch.h"
#include "comp.in.h"
#include "misc .h"
#include "behave.hpp"
#include "signal.hpp"
#include "comsen.hpp"
/* ---
// Static variables

static int top.id; // lame of top configuration
static int top.entity.id; I/ Entity for top-level circuit
static TP.entity top-entity; // Pointer to top-level entity
static int top.arch.id; // Arch for top-level circuit
static TP-arch top-arch; // Pointer to' top-level arch
static int current.config.id; // Current configuration id

static int save-ent.id; 1/ Temp storage for current entity
static int save.arch-id; // Temp storage for current arch

TP.port G-commands;
TP.port G-sensors;
/* ---
void so.far(void);
/* --
[/ Save name of configuration
generate.got.top.id(int id)

// printf("--- CONFIGURATION %2d",id);
top-id = id;

}
/ * -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

// Save name of entity for top configuration
generate.got.top.entity.id(int id)

SignalRecord sr;

194

char title[MAX..NAME..SIZE+iO);

top...entity..id = id;
top-.entity = entity..get(id);

TP-.port port-.list = top-.entity->port...list;
while(port-list != NULL) (

switch(C port..list->direct ion){
case V..II:

sprintf (title ."IN-...#%d",port..list->id);
sr = SignalRecord Cport-.list->id,title,COMNAID-.SR);
add-.command(port-list->id);
add-signal-rec~sr);
break;

case V-OUT:
sprintf (title ,"OUT...#%d",Port-.list->id);
sr = SignalRecord(port..list->id,title,SEISOR-.SR);
add..sensor(port..list->id);
ad&..signal-rec~sr);
break;

default:
yyerror ('Illegal direction in generate-.coa..sig");

I
port-.list =port..list->next;

/* ---
1/ Save name for top arch
generate..got-top..arch..id(int id)

Signaiftecord sr;

top..arch...id = id;
top-.arch = arch-.get~id);

TP..signal signal-.list = top-.arch->signal-list;
while(signal-list != NULL) (

sr = SignalRecord(signal..list->id, "x' ,-987);
add-signal-rec(sr);
signal-list =signal-.list->next;

/* ---
/1 Found entity name to instantiate with
void generate..entity..name(int entity..name)
f

save-.ent-id = entity-.name;
I

If found arch name to instantiate with
void generate..arch..naae(int arch-.id)

195

save-arch-.id = arch-.id;

/* --- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

void create-.behaveC int behave..id, TP..arch arch-ptr)

Behave bb;
Signallecord sr-.ptr;

bb = Behave(behave-.id);
bb set..block..id~arch~ptr->id);

TP-.coup...inst this-comp =coup..inst-.get~behave..id, top..axch->coup...inst..-list);
TP-portmap portmap = this-comp->portmap;
TP-assoc assoc = portmap->assoc-list;
while(assoc != NULL) f

// Find comp that matches this coup
TP-.coup comp = comp-.get(this-.comp->entity, top-arch->coup-list);
TP-.port port = port..get(assoc->left, comp->port);
sr...ptr =get-.signal-rec~assoc->right);
wvitch(port->direction){
case V..II:

bb. add..input (as soc->right .port->number);
sr..ptr add..conns(behavejid);
break;

case V_.OUT:
bb. add..output(assoc->right ,port->number);
sr-.ptr. set-dr iver..bi (behave...id);
break;

default:
yyerror("IllegaJ. direction in (generate)create..behave");

I
m od-.sigxal-rec(sr-.ptr);
assoc = assoc->next;

add-behave..inst Cbb);

/* --- *

void generate-.ident..list (void)

TP-arch arch-.ptr =arch ..getC save..arch..id)
TP-.ident-.list id..ptr = ident-.list-.geto;

while(id..ptr != NULL) f
create..behave(id-.ptr->id, arch..ptr)
id-.ptr = id-.ptr->next;

/* -- *
/*--------------------- :--

197

E.15 IDENT.H

/*#define -- DEBUG--*/
/*

VHDL PARSER

File: IDENT.H

Date: 2 July 1992

This module handles the identifiers encountered by BISON.

Routines:

ident.list.clear()-- Clear current identifier list
ident-list.freeo) -- Free memory of supplied ident list ptr
ident-list.addo) -- Add current ident to current identifier list
ident.list.printO-- Print supplied ident list. If CURRENT-LIST,

prints out current ident list.
ident.list-get() -- Return pointer to current ident list
identset() -- Set identifier to supplied string
ident-geto) -- Return hash value of current identifier
ident.print() -- Print out supplied identifier

*/
/* ----------------------------
#ifndef __ident-h__
#define __ident-h__ I

typedef int T.ident;

/* Ident node */
typedef struct S-ident {

T-ident id;
struct S-ident *next;

}T.ident.list;

/* Ident node pointer */
typedef T-ident-list * TP.ident.list;

/* prototypes */
void ident-list-clear(void);
void ident-list-free(TP-identlist list);
void ident.list.add(void);
void ident-list-print(TP.ident.list list);
TP-ident-list ident.list.get(void);
void ident.set(char *s);
T-ident ident.get(void);
void ident.print(T-ident *id);
void ident.save(void);

198

T-ident ident-save-get(void);
void identclist-printo;
void ident-c-list-free();

void litbset(char *str);
int lit-get(void);

#define MAXIDENTLEN 32 /* Maximum length of an identifier */

/ ---
#endif

199

E.16 IDENT.CPP

/*#define -- DEBUG--*/

VHDL PARSER

File: IDEIT.C

Date: 2 July 1992

This module handles the identifiers encountered by BISON.

*/
#include <stdio .h>
#include <string.h1>

#include <stdlib.h>
#include <alloc.h>
#include "thesis.h"
#include "ident.h"
/ * -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

/* Storage for current identifier */

static char identifier[MAXIDENTLEN+1];

static T-ident id.value;
static T-ident save-ident;

/* Storage for current identifier list */

static TP-ident-list ident.signallist NULL;

/* Storage for current integer lit *[
static int int-lit-value = -1;

/* -- *
void ident-list-clear(void)
{

ident.signal-list = NULL;
}

void ident.c.list-free()
{

ident.list.free(identsignal_list);
I

void ident-list-free(TP-identlist list)
{

TP-ident-list ptr;

ehile(list != NULL) {
ptr = list->next;
free(list);

200

list = ptr;

void ident-.list-.add(void)

TP-.iderit-.list new-.node;

if((new-.node =CTP-.ident-.list)Cmalloc(sizeofCT-.ident-list)))) ==NULL){

yyerror('Out of memory in IDENT-.ADD-IDC)");
exit(105);

new-node->id = ident..geto;
nevjiode->next = ident-.signal-list;
ident-.signal-list = new-.node;

void ident-c-.list-.print()

puts("Printing current list:");
ident-.list-.print~ident-.signal-list);

void ident-.list-.print(TP-.ident-list list)

if Clist == NULL){
putsC'Empty ident signal list");

else{
while(list != NULL){

ident..printC &(list->id))
printf C' "1);

list = list->next;

TP-ident-list ident..list..get (void)

return ident..signal-.list;

/--*
void ident..set(char *s)

strncpy~identifier, s, MAX-.IDENT-LEN);
identilier[MAX-IDENT-.LEN)= \;

201

idvalue = atoi(identilier+l);
}

T-ident ident-get(void)
{

id-value = atoi(identifier+l);
return id-value;

}

void identprint(T_ident *id)
{

printf ("Wd", *id);
}

void ident-save(void)
{

save-ident = id-value;
}

T-ident ident-save.get(void)
{

return save-ident;
}

/--*
void lit-set(char *str)
{

int-lit-value = atoi(str);
}

int litget(void)
{

return int-lit-value;
}I*,*
*--

202

E.17 MCODE.H
/,

VHDL PARSER

File: MCODE.H

Date: 7 July 1992

Routines:

mcode-clear-listo) -- Clear current mcode list pointer
mcode-addido) -- Add current id to current mcode list !!!NOT USED
mcode-add-id-list() -- Add current idlist to current mcode list
mcodeprint(list) -- Print specified mcode list. It CURRENT-LIST,

print current mcode list.
mcode-get() -- Get pointer to current mcode list.

/* ---
#ifndef __mcode-h__
#define __mcode-h__ 1

#ifndef __identjh__
#include "ident.h"
#endif

/* Port mcode node */
typedef struct S-mcode {

int code;
struct S-mcode *prev;
struct S-mcode *next;

} T-mcode;

/* Port mcode node pointer */
typedef T.mcode * TP.mcode;

/* ---
/* Codes for MCODE commands */
// !!!!!! MERGE WITH MCODE.H !!!!

#define MNULL -1 // Null opcode
#define MGET -2 // Get signal (signal #)
#define MPOST -3 // Post signal (signal #, value, delta time)
#define MPUSH -4 // Push??
#define _H.OT -5 // NOT (value)
#define MAND -6 // AND (value1, value2)
#define MOR -7 // OR (valuel, value2)
#define MXOR -8 1/ XOR (valuel, value2)
#define MEND -9 // End execution
#define MNAND -10
#define MNOR -11

203

#define MPOP -12 // Pop and discard top value on stack
#define MSTORE -13 // Store (addr) -- Place TOS in temp store
#define MNRETRV -14 // Retrieve (addr) -- Place value from store on TOS

I* /---

/* prototypes */
void scode.clear.list(void);
void mcode-list-free(TP-mcode list);
void mcode.add(int new-code);
int &code-pop(TP-mcode *mod-list);
void mcode-pop-top(TP-mcode *list);
TP-mcode mcode-begin(TPmcode list);
void mcode-print(TP-mcode list);
TP-mcode mcode.get(void);
void mcode-c-pop-top(7oid);
void mcode-c-list-free(void);
int mcode-c-pop(void);
TP-mcode mcode-c.begin(void);
void mcode-c.print(void);

/ * -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

#endif

204

E. 18 MCODES. CPP
/*

VHDL PARSER

File: mcode. C

Date: 7 July 1992

This module handles the microcode generation.

#include <stdio*.
#include <stdlib.h>
*include <malloc.h>
#include "thesis.h"
#include "mcode.h"
#include "misc.!"
/* *---
/* Storage for current mcode mcode list */

static TP-mcode mcode-list = NULL;

/* --- *
void mcode-clear.list(void)
{

mcode-list = NULL;
}

void mcode-c.list-free(void)
{

mcode-list-free(mcodelist);
}

void mcode.list.free(TP-mcode list)
{

TPmcode ptr;

while(list != NULL) {
ptr = list->prev;
free(list);
list = ptr;

}

void mcode-add(int new-code)

TP-mcode new-node;

if((new-node = (TP-mcode)(malloc(sizeof(T-mcode)))) NULL) {

205

yyerror("Out of memory in PORTADDIDo");
exit (123);

}

new-node->code = nevcode;
new-node->prev = mcode.list;
new-node->next = NULL;
if(mcode-list != NULL) {

mcode-list->next = new-node;

}
mcode-list = new-node;

}

int mcode.c.pop(void)
{

return mcode.pop(Jimcode-list);
}

int mcode-pop(TP-mcode *mod.list)
{

TP-mcode list = *mod-list;
TP-mcode old-node;
int nodevalue;

if(list = NULL) {
return ERROR;

}

/* Pop top node off list */
old-node = list;
list = list->prev;
if(list != NULL) {

list->next = NULL;
}

/* Return changed list */
if(mod-list == CURRENT-LIST) {

mcodelist list;
}
else {

*modlist = list;
}

/* Get value of node */
node-value = old-node ->code;

/* Free the old node s/
free(old-node);

return node.value;
}

/* pop and discard top of list */

206

void mcode-.c-pop-.top~void)

mcode-c-.popC ;

void mcode-.pop-.top(TP-.mcode *list)
f

mcode..pop(list);
I

TP..mcode mcode..c-.begin(void)
f

return mcode-begin(mcode-.list);

TP-mcode mcode-.beginCTPjncode list)

if(list == NULL){
return NULL;

while~list->prev !NULL){
list =list->prev;

I
return list;

void mcode-.c..print Cvoid)

putsC('Printing current mcode list:");
mcode-print Cmcode~list);

void mcode..print(TPjncode list)

if (list ==NULL)f
putsC'Empty mcode mcode list");

I
else{

list = incode-.begin~list);
while~list != NULL) f

switch(list->code){
case ILGET:

puts C"Get..signal');
break;

case M-POST:
puts ("Post");
break;

case MLAND:
puts ("And");
break;

case M-OR:

207

puts("Or");
break;

case KIAND:
puts("Nand");
break;

case MNOR:
puts("Nor");
break;

case M_XOR:
puts ("Xor");
break;

case MNOT:
puts("lNot");
break;

case XEND:
puts ("End");
break;

case MPOP:
puts ("Pop");
break;

case MSTORE:
puts("Store");
break;

case XRETRV:
puts("Retrieve");
break;

default:
printf (" :'/d\n",list->code);

}
list = list->next;

I
I

TP-mcode mcode-get (void)
{

return mcode-c-begino);
I
/*---*

208

E.19 MISC.tH

VHDL PARSER

File: MISC.H

Date: 2 July 1992

Miscellaneous routines for functions called from BISON

Routines:

directsetC) -- Set parsed direction
direct-get() -- Get current direction
type-seto) -- Set current type
type-geto) -- Get current type

*/

/* --- *
#ifndef __misc-h__
#define __miscth__ 1

/* --
/* Constants */

#define VIN 1 /* Port direction IN */
#define VOUT 2 /* Port direction OUT */
#define VBIT 3 /* Type mark BIT
/* ---

/* prototypes */
#ifdef __BORLANDC__
void direct-set(int new.dir);
int direct.get(void);
void type-set(int new-type);

int type.get(void);
#else
void direct-seto);
int direct-geto;
void type-seto;

int type.geto);
#endif

/* ---*
#endif

209

E.20 MISC.CPP
/*

VHDL PARSER

File: NISC.C

Date: 2 July 1992

Miscellaneous routines for functions called from BISON

*/

#include "thesis.h

#include "misc.h"
/* *---
/* Storage for current values */

static int current-port.direction;
static int current.type-mark;

/* ---
/* Routines for handling current port signal direction */

void direct-set(int new-dir)

current-port.direction = new-dir;
}

int direct-geto)

return current.port-direction;

I
/* --- *
/* Routines for handling current type mark */

void type-set(int new-type)

current-type-mark = new-type;

int type.geto)

return currenttype.mark;

*--

210

E.21 PORT.H

VHDL PARSER

File: PORT.H

Date: 2 July 1992

This module handles the creation of a port's list of
input/output signals. Theses functions are called by the BISON
program.

Routines:

port.clear() -- Clear current port list
port-add-ido) -- Add current ident to current port list !!! NOT USED
port-add.id-list() -- Add current identlist to current port list
port-print(list) -- Print supplied port list. If CURRENTLIST,

print out the current list.
port.get() -- Get pointer to current list.

*/
/* ------------------------------------
#ifndef __port-h__
#define __port.h__ 1

#ifudef __ident-h__
#include "ident.h"
#endif

/* Port signal node */
typedef struct S-port {

T_ident id;
int number;
int direction;
int type;
struct S.port *next;

} T.port;

/* Port signal node pointer */
typedef T-port * TP-port;

/* ---

/* prototypes */

void port-clear(void);
void port-add.id(void);
void port.add.id.list(void);
void port-print(TP.port list);
TP.port port.get(void);

211

TP-port port.get(int id, TP.port ptr);

SI---
#endif

212

E.22 PORT.CPP
/,

VHDL PARSER

File: PORT.C

Date: 2 July 1992

This module handles the creation of a port's list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdio.h>
#include <stdlib .h>

#include <assert.h>
#include <malloc.h>
#include "thesis.h"
#include "port.h"
#include "misc.h"
/* ---
/* Storage for current port signal list *1

static TP.port port.signal-list = NULL;
static int in.port.count = 0;
static int out-port.count = 0;
/* ---
void port-clear(void)
{

port.signal.list = NULL;
in-port-count = 0; // Current port location number
out.port.count = 0; // Current port location number

}

void port-add.id(void)

TPport newnode;

if((new-node = (TP-port)(malloc(sizeof(T.port)))) NULL) {
yyerror("Out of memory in PORTADDIDo");
exit(124);

I
new-node->id = ident.get();
switch(neunode->direction)
case VIN:

new-node->number in.port.count++;
break;

case VOUT:
new-node->number out-port-count++;
break;

213

default:
puts C"!M! ! Illegal direction in port..add-.id, port. cpp');
exit(125);

I
new-.node->next = port..signal-list;
port-.signal-list =new-.node;

void port-.add.id-.list (void)

TP-.port new-.node;
TP~ident-.list new-.list;
TP..ident..list lst-.ptr;

now-.list = lot..ptr = ident-list-.getC);

while(lst..ptr != NULL) f
iW (new-.node = (TP..port)Cmalloc~sizeof(T-.port)))) ==NULL){

yyerror("Gut of memory in PORT-ADD-.ID-.LISTC)');
exit(126);

I
new-.node->id = lst-ptr->id;
new-node->direction = direct..getoC;
switch (new-.node->direct ion){
case V-II:

new-node->number = in-.port..count++;
break;

case V-OUT:
ne...node->nunber = out-.port..count++;
break;

default:
putsC"~!!e Illegal direction in port..add-id-.list, port.cppl);
exit(127);

new-.node->type = type-.geto;
new-node->next = port..signal-list;
port-.signal-.list = new~.node;
lst..ptr = lst-.ptr->next;

ident-.list-.free(new-list);

void port-print(TP..port list)

it(list ==NULL){
puts("Empty port signal list");

else{
if(list ==CURRENT-.LIST){

putsC"Found CL; printing current list:");
list = port-.signal-.list;

214

}

while(list != NULL) {
printf("Name: ");
ident.print(k(list->id));
printf(" #:%2d",list->number);
printf(" Dir: ");
switch(list->direction) {

case V_II: printf("I ");break;
case VOUT: printf("OUT");break;
default: printf ("Unknown");

}

printf(' Type: BIT");
putsC"");
list = list->next;

TP.port port.get(void)
{

return port.signal.list;

}
/* -- *
// Return pointer to port specified by id in supplied port list
// Return NULL if not found
TP-port port-get(int id, TP.port ptr)
{

while(ptr != NULL && ptr->id != id) {
ptr = ptr->next;

}
if(ptr == NULL) {

printfC"!!!!! Error - Couldn't find port %d (PORT.CPP L141)",id);
exit(128);

}
return ptr;

/* /---

215

E.23 PORTMAP.H
/*

VHDL PARSER

File: PORTMAP.H

Date: 9 July 1992

This module handles the creation of a portmap's list of
input/output signals. Theses functions are called by the BISON
program.

Routines:

portmap-clearC) -- Clear current portmap list
portmap-add-ido) -- Add current ident to current portmap list D
portmap-add-id-listC) -- Add current identlist to current portmap list
portmap-print(list) -- Print supplied portmap list. If CURRENT-LIST,

print out the current list.
portmap.get() -- Get pointer to current list.

*/
/* --
#ifndef __portmap-h__
#define __portmap-h__ 1

#ifunde __assoc-h__
#include "assoc.h"
#endif

/* portmap signal node */
typedef struct S.portmap

TP-assoc assoc.list;
struct S.portmap *next;

} T.portmap;

/* portmap signal node pointer */
typedef T-portmap * TP.portmap;

/ * -- - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -

/* prototypes */

void portmap.list-clear(void);
void portmap.list-free(TP-portmap list);
void portmap.list-add-node(TP-assoc list);
void portmap..list -print(TP-portmap list);
TP-portmap portmap-get(void);

#endif

216

217

E.24 PORTMAP.CPP
/*

VNDL PARSER

File: PORTMAP.C

Date: 9 July 1992

This module handles the creation of a portmap's list of
input/output signals. Theses functions are called by the BISON
program.

*#

#include <stdio.h>
#include <stdlib. h

#include <assert.h>
#include <malloc .h>

#include "thesis.h"
#include "portmap. h"
#include "misc.h"
/* ------------------------ */
/* Storage for current portmap signal list */

static TP.portmap portmap.list = NULL;

/* ---
void portmap.list-clear(void)
{

portmap.list = NULL;
}

void portmap-list-free(TP-portmap list)

TP-portmap ptr;

if(list == CURRENT-LIST) {
list = portmap-list;

}
while(list != BULL) {

ptr = list->next;
free(list);
list = ptr;

}

void portmap-list-add.node(TP-assoc list)
{

TP.portmap new-node;

if((neownode = (TPportmap)(malloc(sizeof(T-portmap)))) NULL)

218

)yerror("Out of memory in portmapADDID)");
exit(107);

}

new-node->assoc-list = list;
new-node->next = portmap-list;
portmap-list = new-node;

void portmap-list.print(TP.portmap list)
{

if(list == NULL) {
puts("Empty portmapiation list");

}
else {

if(list == CURRENT-LIST) {
puts("Fouxid CL; printing current portmap list:");

list = portmap-list;
I

while(list != NULL) {
puts("Association list:");
assoc.list-print(list->assoclist);
list = list->next;

}
I

TP.portmap portmap.get(void)
{

return portmap.list;

I
/* ---

219

E.25 PROCESS.H

VHDL PARSER

File: PROCESS.H

Date: 14 July 1992

This module handles the creation of an process by the
VHDL parser. These routines are called by the BISON program.

Routines:

process-clearo) -- Clear current process settings
process-add-mcodeC) - Add current mcode

process-printo) - Print out specified process - NULL prints
out current process

*/

I, *I

#ifndef __process-h__
#define __process-h__ I

#ifndef __mcodeh__
#include "mcode.h"
#endif

typedef struct S-process {
TP-mcode mcode;

} Tprocess;

#ifdef __process-c__
T-process NULL-PROCESS ={NULL};
#else
extern T-process NULLPROCESS;
#endif

/* prototypes */

void process.clear(void);
void process.add.mcode(void);
T-process process-get(void);
void process.c.print(void);
void process.print(T.process *ent);
int create-c.sim.process(void);
int create-sim-process(T-process *proc);
void newsim.block(int arch-id);
void add-code-to-sim-block(int code-id, char *code-title);

void finish-sim-block(void);
void create.all-hypo(void);

220

tendif

221

E.26 PROCESS.CPP
/*

VHDL PARSER

File: PROCESS.C

Date: 14 July 1992

This module handles the creation of an process by the
VHDL parser. These routines are called by the BISON program.
Fault hypotheses are also added in this module.

*/

#define __process.c__ 1

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include "thesis.h"
#include "process.h"
#include "block.hpp"
#include "code.hpp"
/* --- *
/* Current process being created */

static T.process currentprocess;

/* *---
void process.cleax(void)
f

current -process.mcode = NULL;
I
/* --
void process.add.mcode(void)
f

current.process.mcode = mcodeget(0;

/* *---
T.process process.get(void)
f

return current-process;

/* *---
void process.c-print(void)

process.print(Ccurrent-process);

/* -- *
void process-print(T-process *ent)
{

222

if(ent->mcode == NULL) {
puts("Null Process");

}

else {
puts("process mcode list");
mcodeprint (ent->mcode);

}
}
/* ---
/* --
// Create code-structure for simulator use. This routine will take the
// supplied code process and create a CODE block. This routine will be
// called by create-sim.blocko)

int create.c-sim.process(void)
{

return create.sim.process(¤t.process);
}

int create-sim.process(T-process *proc)
{

static int code-count = 0; // ID for new code block; return value

Code code-block;

code-block = Code(code-count);
T-mcode *mcode-ptr = proc->mcode;

while(mcodeptr != NULL) {
code-block.add-mcode(MCode(mcode.ptr->code));
mcode-ptr = mcode.ptr->next;

}

add-code-block(codeblock);

return code.count++;

}

// Storage for new sim block object

static block new-block;

void new-simublock(int arch-id)
{

new-block = block(archid);
}

void add-code.to.sim.block(int code-id, char *code-title)
{

new-block.add.code(codeid, code-title);
}

223

void finish-.sim-block~void)

ad&..block-.inst Cnew-.block);
I
/* -- *

int hypo..in..stuck..hi(Code &good-code, iut get-number)

iut mcode-.pos = 0;
int code-.get-..o = M-N.ULL;
int found-.get = FALSE;
char title...str[MAX-.STR-LEI+1);
M~ode mcode..ref;

mcode..clear-.listo;
process-.clearC);
while(mcode..pos < good-.code.get-.code...blk-.leno) f

mcode-ref = good-code.get-.mcode..at~mcode-.pos);
if(C mcode-.ref .get...op-.codeO) == N..GET){

if Ccode-.get-.no == get-.number) f
mcode...addCM.YOP); IIRemove signal offset
mcode..add(1); IIStuck HI
found-got =TRUE;

else{
mcode-.add(mcode...ref .get-.op. code 0);

else{
ucode-.add~ucode.z-ref .get-.op-.codeo);

code-.get..no = mcode-ret .get-.op..codeoC;
mcode..pos++;

ifCf ound-.get){
process-.ad&..ucodeoC;
sprintf (title-.str, "Input #74 stuck hi ",get-number);
add-code-to-s.im.block(create-.c-.sim..process 0, title..str);

return found-.get;

/*--*
mnt hypo-.in-stuck-.lowC Code &good-.code, int get..number)

mnt mcode...pos = 0;
mnt code-.get-no = M-N.ULL;
mnt found-.get = FALSE;
char title...str[MAX-.STR-.LEN+1);
MCode mcode..ref;

224

mcode-.clear-listo;
process-.clearo;
while(mcode-.pos < good-.code.get-.code-blk-.lenC))

mcode-ref = good-.code.get-..code-.at(mcode-.pos);
Wf scode-.ref.get-.op-.codeo) == M-GET) j

if(code-.get-.no == get-.numnber) f
mcode..addCLPOP); IIRemove signal offset
scode-.add(O); //Stuck LOW
found~get = TRUE;

else{
mcode-.add~mcode-.ref .get-.op-.codeoC);

else f
mcode..add (acode-.ref get..op-.codeoC);

code-.get-.no = mcode-.ref.get-.op-.codeo;
mcode...pos++;

if Cfound-.get){
process...add..mcodeo);
sprintf(title-.str, "Input Ad stuck low",get-.nwnber);
add-code-.to..sim-.block(create..c-siu..processoC. title-.str);

return found-.get;

/*---*
int hypo-out-.stuck-.hiC Code &goo&..code, int post-.number)

int mcode-pos = 0;
int found-.post-.no = 0;
int found-.post = FALSE;
char title-.str[MAX-STR-.LEN+1);
MCode mcode-.ref;

mcode-.clear-listo;
process-.clearo;
while(mcode-.pos < good-.code.get-.code-.blk-.lenC))

mcode-.ref = good-code.get-jacode-at(mcode-.pos);
if(mcode-.ref.get..op..codeC) == ILPOST){

if(found..post-.no == post-.number) f
mcode..add(a); IITemp store addr to save time
mcode-.add(N-.STORE); /1Store delta time
mcode-.add(II.YOP); IIRemove old value
mcode..add~l); //Stuck HI
mcode-add(O); IITemp store addr
mcode-.add(M..RETRV); //Get stored delta time
mcode-.add(H-POST); //POST
found-.post = TRUE;

225

else f
mcode..add~mcode...ref .get...op-.code 0);

found..post-no++;

else *
mcode-.add~mcode-.ref .get-.op-.codeo);

I
mcode..pos++;

if(found-.post) f
process-.add..mcodeo;
spriutf(title..str, "Outut #%d stuck hi ",post..number);

ad-oet-i-lcIrae--i-rcso il~t)

return found-.post;

/* --
int hypo-.out-.stuck-lovC Code &good-.code. iut post-..number)

int mcode...pos =0;
int found-post-.no =0;
int found-.post =FALSE;
char title-strD4AX-~STR-LEN+1);
M~ode mcode-.ref;

mcode-.clear-l.ist 0;
process-.clearC);
while(mcode...pos < good..code.get-.code-.blk..leno))

mcode-.ref =good-.code.get..mcode-.at(mcode..pos);
if(mcode...ef.get~.op..code() ==LPOST){

if~found-.post....o == post-.niumber) (
mcode..add(Q); //Temp store addr to save time
mcode-.add(M-.STORE); //Store delta time
mcode..addCICPOP); R1 emove old value
mcode-.add(O); /1Stuck LOW
mcode..addCO); IITemp store addr
mcode..add(M-RETRV); /1Get stored delta time
mcode-.add(M-POST); //POST
found-.post =TRUE;

I

else f
mcode..add(mcode...ret.get.op..code 0);

22

mcode-pos++;
}

if(found.post) {
process.add.mcode();
spriutf(titlestr, "Outut #%d stuck low",post-number);
add-code-to-sim-block(create-c-simn-process(), title_str);

}

return found-post;
}

/* --- *

// The working model of a process is defined as code #0
#define WORKING-MODEL 0

void create.all-hypo(void)
{

int get-no,
post-no;

Code *code.ptr = get.code.block(nev.block.get-code(WORKIIGMODEL));

// Hypothesize inputs of component stuck high
post-no = 0;
while(hypo.out-stuck-hi (code.ptr, post.no++)) {}

// Hypothesize inputs of component stuck low
postno = 0;
while(hypo-out-stuck-low(code-ptr, post.no++)) {}

// Hypothesize inputs of component stuck high
get-no = 0;
while(hypo-in.stuck-hi (code-ptr, get-no++)) {}

// Hypothesize inputs of component stuck low
get-no = 0;
while(hypo-in-stuck-low(codeptr, get.no++)) {}

}
/* /---

227

E.27 SIGNAL.H
/*

VHDL PARSER

File: SIGNAL.H

Date: 7 July 1992

Routines:

signal-clear-list() -- Clear current signal list pointer
signal.add-id() -- Add current id to current signal list M!N!OT USED
signal.add.id.listO) -- Add current id.list to current signal list
signal-print(list) -- Print specified signal list. If CURRENT-LIST,

print current signal list.
signal-get() -- Get pointer to current signal list.

*/
/* *---
#ifndef __signal.h__
#define __signal-h__ 1

#ifndef __ident-h__
#include "ident.h"
#endif

/* Port signal node */
typedef struct S.signal {

T-ident id;
int type;
struct S.signal *next;

} T.signal;

/* Port signal node pointer */

typedef T.signal * TP.signal;

/* ---,

/* prototypes */
#ifdef __BORLANDC__
void signal.clear.list(void);
void signal-add.id(void);
void signal.add.id.list(void);
void signal.print(TP.signal list);
TP.signal signal-get(void);
#else
void signal.clear.listo;
void signal-add-ido;
void signal-add.id-listo;
void signal.printo;
TP.signal signal-geto;

228

#endif

/* *-
#endif

229

E. 28 SIGNA LP. CPP
/*

VIDL PARSER

File: SIGNAL.C

Date: 7 July 1992

This module handles the creation of signals.

#include <stdio.h>
#include <stdlib.h>
#include <malloc .h>

#include "thesis.h"
#include "signal.h"
#include "misc. h"
/* /---
/* Storage for current signal signal list */

static TPsignal signal-signal-list = NULL;

/* /---
void signal.clearxlist(void)
{

signal-signal-list = NULL;
}

void signal.add.id(void)
{

TP.signal new-node;

if((new-node = (TP.signal)(malloc(sizeof(T-signal))))== NULL) {
yyerror("Out of memory in PORTADDIDO");
exit(108);

}

new.node->id = ident.get C);
nev-node->next = signal-signal.list;
signal-signal-list = new-node;

void signal.add-id.list (void)
{

TP._signal new-node;
TP-identlist neowlist;
TP-identlist lst-ptr;

neowlist = lst.ptr = ident-list-geto);

while(Ist.ptr != NULL) {
if((neownode = (TP-signal)(malloc(sizeof(T-signal)))) == NULL) {

230

yyerror("Out of memory in SIGEAL..ADD-.ID-.LISTo");
exitC 109);

new-.node->id = lat...ptr->id;
new-.node->type = type..geto;
new-.node->next = signal-signal-list;
signal-.signal...list = neow-node;
lst..ptr =lst-ptr->next;

idont-.list-.free(neu..list);

void signal-.print(TP-.signal list)

if (list == NULL){
puts("Empty signal signal list");

I
else f

if (list == CURRENT-.LIST){
putsC"Found NULL; printing current signal list:");
list = signal-signal-list;

while~list != NULL){

printf ("lame:")
ident..printC &(list->id))
printf C" Type: BIT");
puts C""));
list = list->next;

TP-.signal signal-.get(void)

return signal-.signal-.list;
I
/* --- *

231

Appendix F. Simulator/Diagnostic Source Code

F.1 Overview

This appendix contains the code for Calvin's VHDL simulator and diagnostic routines. A

module generally consists of a header file and associated code file. These have the same or similar

names, with a ".hpp" extension for the header and a ".cpp" extension for the code file. The

following modules were discussed in Chapter III:

a BEHAVE - section 3.3.4.6

* BLOCK - section 3.3.4.7

* CODE - section 3.3.4.8

* MCODE - section 3.3.4.9

9 SIGNAL - section 3.3.4.5.

The following modules handle specific minor tasks:

* COMSEN - manage the lists of commands and sensors

e INT - A Object shell for an integer. This module was required so that integer values could

be used with Borland's container library.

* STAT - This module collected the statistics discussed in section 4.1.1.

o THESIS - This module contained the various constants used throughout the simulator/diagnostic

routines.

The module MAIN contains Calvin's user interface. Here is were Calvin parses the command line,

and where Calvin's system flags are set. Calvin opens the source file, and sends it to the VHDL

parser. Calvin then calls the diagnostic routines contained in the module named CALVIN.

232

The VHDL module is Calvin's VHDL simulator. Most of the VHDL simulation routines

are gathered here. This module uses the signal, behave, block, and code objects to perform

the simulation. The simulation is controlled by a function at the end of the VHDL module,

vhdl.anainloop() . The activation record used by the VHDL simulator is defined in the module

AR.

The diagnostic routines are gathered into the module CALVIN. These routines include

suspect collection and fault insertion. The main diagnostic algorithm is also in CALVIN.

F.2 AR.HPP
/-
// AR.HPP
//

// Activation Record Class
i/
II Modified 16 July 1992
I/
#ifndef __ARHPP__
#define __ARHPP__ 1

#include <sortable.h>

#define ActiveRecordClass 222

class ActiveRecord : public Sortable {
public:

ActiveRecord() {
time = -1;
sr.ptr = -1;
value = -1;

}
ActiveRecord(int newtime, int new-sr.ptr, int new-value) {

time = new-time;
sr.ptr = neu-sr-ptr;
value = new-value;

}
int get-srtptr(void) {

return sr-ptr;
I
int get.value(void) {

return value;
2

233

mnt get-.time(void){
return time;

virtual int isEqualC coast Object& otherObj) const{
return time == ((Activeftecordk) otherflbj).time;

virtual jut isLessmhanC const Object& otherObj) coast{
return time < (CictiveRecord &) otherabj).time;

virtual classType isAC) coast {return ActiveRecordClass;}

virtual char *name~f() const {return "Active Record";)
virtual hashValueType hashValueo) coast{

return time;
I
virtual void priatOaC ostream& coutt) coast f

coutt << "Time: " << time <<" srptr: <<« sr..ptr
"<" Value:" << value;

private:
int time;
mnt sr..ptr;
mnt value;

#endif

234

F.3 BEHAVE.HPP
//
//

// BEHAVE.HPP
//

// Behave Class
//

// 16 July 1992
//
// Behavie instance object
//

//------------------

#include "thesis.h"
#define MAX-CODE 20 // Maximum number of bodies for behave

#define MAXBEHAVEINST 40 // Max number of behaviors in simulation

class Behave {
public:

Behaveo;
Behave(int new.id);
int get.id(void); // Get id number

void set-code-select(int); // Select code for execution
int get-current-select(void);// Get current code nuber
void set.block-id(int); // Set block id to exec for this behave
int get-block-id(void); // Get block id to exec
int get-code-count(void); // Return number of bodies

void add_input(int); // Add new input to input list
void addinput(int,int); // Add new input to position in list
int getinput(int); // Get input id
int get-input-count(void); II Return number of inputs

void add.output(int); // Add new output to output list
void add_output(int,int); // Add new output to position in list
int get.output(int); // Get output id
int get-output-count(void); // Return number of outputs

void print(char *); // Debug print

private:
int id; // Int name of behave
mnt block.id; // ID of block to exec for this behave
int code-select; // Current code for Behave execution
int input[MAX_IN]; // List of inputs to Behave
int last-in; // Last input added
int output[MAXOUT]; // List of outputs from Behave
mnt last-out; // Last output added

235

// Behave instance storage management routines

void reset-behave.inst(void);
void add.behave-inst(Behave knew-behave);
int get.last-behave.inst(void);
int get-behave.id.at(int pos); // Get behave it at position
Behave &get-behave-inst(int id);
void behave-inst-print(char *s);

void flush-behave-mark(void);
void mark_behave(int id);
int is-behave-marked(int pos);

/ --

236

F.4 BEHAVE.CPP
//

// BEHAVE.CPP
//

// Behave Class
//

// 16 July 1992
//------------------
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <assert.h>

#include "behave.hpp"
#include "block.hpp"
// ---
// Storage for Behave instance

static Behave behave-storage[MAXBEHAVEIIST);
static int behave-mark[MAXBEHAVEINST);
static int last-behave-inst;

// ---
// Local function prototypes
int translate-id.to-pos(int id);
-/ ---

// Clear behave instance mark list
void flush-behave-mark(void)
{

for(int i=O;i<MAXBEHAVEINST;++i) {
behave-mark[i] = FALSE;

}

--
// Mark a behave instance
void mark-behave(int id)

behave-mark [translate-id-to.pos (id)] = TRUE;
}

-/ ---
// Return mark status of a behave
int is.behave-marked(int id)
{

return behave-mark [translate.id.to.pos (id)];
}

// ---
//-- ---
void reset.behave.inst(void)
{

last-behave-inst = 0;
}

237

//---
void add-behave.inst(Behave knevbehave)

assert(lastbehaveinst<MAXBEHAVEIIST);
behave.storage[last-behave.inst++) = new-behave;

}

/--------------- -----------------------
int translate-id-to-pos(int id)

for(int i=O; i<last-behave-inst; ++i) {
if(behave-storage[iJ.get.ido) == id) {

return i;
}

}

printC("Invalid id numbr #Y/ in translate-id-to-poso)\n",id);
exit(l);
return -1;

}

-- ---
Behave &get.behave-inst(int id)

for(int i=O; i<last-behave-inst; ++i) {
if(behave.storage[i).get-id() == id) {

return behave-storage[i];
}

I
printf("!!!!!! Bad id '%d'in getbehaveinst---behave.cpp\n",id);
exit(l);
return behave.storage[O];

}

int get.behave.id-at(int pos)

return behave-storage [pos) .get-ido;
}

-- --
int get-last-behave-inst(void)

return last-behave-inst;
}

--
void behave.inst-print(char *s)

printf(s);
ior(int i=O; i<last-behave-inst; ++i)

print(C.--...behave inst %2d ----- \n",i);
behave-storage[i).print("");
getcho);

}

puts(-------------------------);

238

Behave::Behave()

id = 0;
last-in = last-out = 0;
code-select = 0;

}
// --
Behave::Behave(int new.id)

id = new-id;
lastin = last-out = 0;
code-select = 0;

}

/--
int Behave::get.id(void)

return id;

--
void Behave::set-code-select(int new-code-select)
{

code-select = new-code-select;
}

//---
int Behave::get.current.select(void)
{

return code-select;
}

//---
void Behave::set-blockid(int newblock-id)
{

block-id = new-block-id;
}

//---
int Behave::get.block-id(void)
{

return block-id;
}

- --
int Behave::get-code-count(void)
{

return get-block-inst (block-id). get.code.count (;
}

//---
void Behave::add.input(int input-id)
{

assert(lastin < MAXIN);

input[last-in++] = inputid;

}

239

/,-----
void Behave::addinput(int input.id, int input-pos)

assert(input.pos <NAXIN);

input~input-pos++] = input-id;
if(input-pos>=last-in)

last-in = input-pos;
}

}

-- ----

int Behave::get-input(int input-no)

assert(input-no<lastin);
assert(inputno>=O);

return input[input.no);

--
int Behave::get-input-count(void)

return last-in;

--
void Behave::add-output(int outputid)

assert(lastout < MAXOUT);

output[lastout++] = outputid;

--
void Behave::add-output(int output-id, int output-pos)

assert(output-pos < MAXOUT);

output [output.pos++] = output-id;
if(output-pos>=last-out)

last-out = output.pos;
}

int Behave::get.output(int output-no)

if(outputno >= lastout)
printf ("ERR: this='d output.no=%d last-out=7d\n", idoutputno,last-out);
exit(C-i)

}
assert(outputno<lastout);
assert(outputno>=O);

return output[output-.no);

240

II-

int Behave::get.output.count(void)

return last-out;

--
void Behave::print(char *s)

priint(s);
printf("Behave id: %2d Block id:%2d Current code: %2d\n",id,

block.id,code-select);

puts("Inputs:");

for(int i=O;i<last-in;++i)

printf("%2dl input id %2d\n",i,input[i]);

puts ("Outputs:");
for(i=O;i<last-out;++i) {

printf("%2di output id %2d\n", i,output [i]);

}

241

F.5 BLOCK.HPP
I,
/1

// BLOCK.HPP
//

// Process Block Class
//

// 30 July 1992
//------------------
#ifndef _BLOCKHPP_
#define _BLOCKHPP_

#define MAX-CODES 20 // Maximum number of code bodies for block
#define MAXBLOCKINST 10 // Max number of blocks in simulation
#define MAXSTRLEN 20
// ---
class block {
public:

block(int id); 1/ Constructor
block(void);
"Tblocko; // Destructor
int getid(void); /[Get id number
void add.code(int,char *); // Add new code to code list
int get.code(int); // Get code id
int get-code-count(void); // Return number of bodies
char *hyp-str-get(int); // Return hypothesis title
void print(char *s); // Print block description

private:
int id; / Int name of block
int sim-codeid[MAX.CODES]; // VHDL microcode code number
char hyp-str[MAX-CODES]JMAX-STRLEK+tJ; // Strings for hypothesis' name
int last-code.no; // Last code number added

--
// block instance storage management routines

void reset-block-inst(void);
void add-block-inst(block knew-block);
int get.last-block.inst(void);
int get-block-id.at(int pos); // Get block it at position
block &get-block-inst(int id);
void blockinstprint(char *s);
// ---
#endif

242

F.6 BLOCK.CPP
//
//

// BLOCK.CPP
//

// Process Block Class
//

II 30 July 1992
//------------------

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <alloc.h>
#include <assert.h>
#include "block.hpp"
// ---
/S storage for block instance

static block block-storage[MAXBLOCKINST);
static int last-block-inst;

// ---
block::block(int new.id)
{

id = nev-id;
last-codeno = 0;
// Clear all hypothesis strings
for(int i=O;i<MAXCODES;++i) {

strcpy(hyp-str[i], ');
}

}

block::block(void)
{

id
lastcodeno = 0;
// Clear all hypothesis strings
for(int i=O;i<MAXCODES;++i) {

strcpy(hyp.str [i], '...);
}

}

block::-block()
{

// printf("BLoCK::-DELETE %p\n",this);getchO;
}

-- ---
int block::get-id(void)
{

return id;
}

243

void block::add-code(int codeid, char *new-hyp-str)
{

assert(lastcodeno <NAXCODES);

sim-code-id[last-code-no) = code.id;
strncpy(hyp.str[last.code.no], new-hyp.str, NAX-STR-LEN);
last.code.no++;

}

/. ---
char *block::hyp.str.gett(int number)
{

return hyp.str[number];
}

//---
int block::get.code(int code-no)
{

assert(codeno<last-code.no);
assert(code-no>=O);

return sim-code-id[code-no3;
}

//---
int block::get.code.count(void)
{

return last.code-no;
}

//---
void block::print(char *s)
{

printf(s);
printf("Block id: %2d\n",id);

puts("Codes:");
for(int i=O;i<lastcode.no;++i) {

printf("%2dJ code id %2d\n",i,sim.code-id[±i);
}

}

--
--

void reset-block-inst(void)
{

last-block-inst = 0;
}

//---
void add-block-inst(block knew-block)
{

assert(lastblockinst<MAX_BLOCKINST);
block-storage[last-block-inst++÷ = new-block;

}

--
block *get-block.inst(int id).

244

for(int i=O; i<lastblock_ nst; ++i) {
if(block-storage[i].getid() == id) {

return block.storage [i];

}

printf("!!!!!! Bad id I%2d1 in getblock.inst---block.cpp\n",id);
exit(116);
return block-storage[O] ;

}

--
int getblockidat(int pos)
{

return block-storage[posJ.get.ido);
}

--
int get..last-block-inst (void)
{

return last-block-inst;
}

//--- --
void block-inst-print(char *s)

printf(s);
for(int i=O; i<last -block- inst; ++i)

printf(" ----- block inst %2d-....\n' M);
block-storage[i] .print(".);
getcho;

}

puts("---------------------..)
}

--
--

245

F. 7 CALVIN. CPP
//
//

1/ CALVIN.CPP
//

// 16 Jul 92
//

// This module is where most of the modules that make up the current
// configuration of Calvin. During developement, routines were created
// using this module. As they were completed, they were spawned off into
// their own modules. The current state of Calvin developement is in this
// module.
//
//
//

// void print-bi-queue() -- Debuge routine
/ int get-hibfrom-signal() -- Get the Behave that drives the signal

// void init.suspect.queue() -- init queue
II void collect.bi-suspectsC) -- Original depth-lst collection routine
// void sus.depthIst(int sr.id) -- +
// void collect.bi_suspects_2(int srid) -- +- Modified collection routine.
// Break when encounter a Behave that is already in the queue.
//

If These routines make up the suspect collection part of Calvin.
//
I/
II void sim-signal-init(void) -- init routine
// void sim-set-upo) -- init routine
I int sensor-compo) -- Compare simulated sensors with outside sensors

// void loadoutval() -- Get outside sensor values
// void faultify-behave() ". Break" the circuit.
// void diagnose() -- The Diagnose algorithm
If void run-exam() -o Run Calvin

--
//
#include <stdio.h>
#include <conio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

#include <queue.h>

#include "thesis.h"
#include "signal.hpp"
#include "behave. hpp"
#include "block. hpp"
#include "code.hpp"

#include "int.hpp"
#include "vhdl.hpp'

246

#include "comsen.hpp"
#include "stat.hpp"
// ---
Queue bi_queue; // Queue of Behave Instance suspects
// ---
// Debug function to print suspect BI queue
void print-bi-queue(void)
{

Queue temp.q = bi-queue;

puts("Queue of Sehavioral Instance suspects");
while(!temp-q.isEmptyO) {

cout << temp.q.get() << endl;

}
puts(" .----------------------------------)

exit(O);
}

// ---
// Get BI id# of instance that drives specified signal
int get-bi-fromnsignal(int sr.id)
{

SignalRecord ksr.ptr = get-signal-rec(sr-id);
return sr-ptr.get-driverbio);

}

/- ---
// Flush out the suspect queues
void init.suspect.queue(void)
{

bi-queue.flush();
}

--
/I Collect list of suspects from a possible discrepant signal
// Uses depth first approach

/int level = 0;

void collect-bi-suspects(int sr.id)
{

Integer *suspect-bi;

suspect-bi = new Integer(getbi-from-signal(sr-id));
// Make sure we're not at the top (command level)
if(suspect-bi->valueo) != COMMANDSR) {

bi-queue.put(*suspect-bi);

// Recurse upstream from behave instance
Behave kbi.ptr = get.behave.inst(suspect-bi->value());
for(int i=O; i<bi_ptr.get-input-count();++i) {

collect.bi.suspects(bi.ptr.get.input(i));
inc-stat(NOSUSPECTS);

247

else f
// putsC'Reached command level");

---------- ---

void sus-depth-.Ist~int sr-.id)

Integer *suspect-.bi;

suspect-.bi =new Integer~get-.bi-.from..signal(sr-.id));
// Make sure we're not at the top (command level)
if~suspect-.bi->valueo) != COMMAND..SR) (

// Make sure suspect not in queue already
if(C !is-.behave-marked(suspect..bi->iialueo)) f

mark-.behave~suspect..bi->valueC));
bi-.queue.prtC *suspect-bi);

// Recurse upstream from behave instance
Behave kbi-ptr = get-behave-inst~suspect...bi->valueo));
for(mnt i=0; i<bi-ptr.get-input-counto);++i){

sus-depth-ist~bi-ptr.get-.input Ci));
inc..stat CNOSUSPECTS);

else{
II puts("Rdached command level");

void collect-bi-suspects.2C mnt sr_id)

flush..behave-markoC;
init..suspect..queue 0;
sus-.depth-ist(sr-id);

--
void sim-signal-init~void)

process-initoC;
vhdl..main-.loopo;

248

-- - - - - - -- - - - - - -- - - - - - - --- - - - - - - - - - - -
void sim..set..upC

jut '*in-.val,
int in-.val~last)

for~iut i0O;i<in-.val-last;++i){
post-.signal(O~get-.comuand(i) ,*Cin-.val+i));

--
IICompare simulated values (out-val) with recorded (rec-.val)
1/Return TRUE if same, FALSE it not

jut sensor..comp(
jut *out-val,
jut *rec-val,
jut out-.val-.last)

for~int i=0;i<out-.val-.last;++i) f
if Cout-val~i) != rec-val~ij) (

return FALSE;

return TRUE;

--
void load..out..val C

jut *out..yal,
jut out~val..last)

for~int i0O;i<out..val-last;++i){
SignalRecord si-ptr = get..signal-rec Cget-.sensor~i));
*Cout...val+i) = si..ptr.get-.cval();

void faultify..behave(

jut bi...id,
jut *inva~l,

jut in-.val-last,
jut. *out-val,
jut out..val-.last,
jut *rez-val)

Behave kbi-.ptr =get-.behave-.inst~bi-id);
Wf is-flag-.set(PRINT-.HYPO)) {

printf('For %2d, we have %d bodies.\n',
bi-.id, bi-.ptr.get-code-.coumto));

I.
for~iut iI; i<bi-ptr .get-code-.countOC; ++i) f

if Cis-flag..set (PRINT-..YPO)) f
printfC"Selecting fault condition U%d\n",i);

249

IIHypothesize error
bi-ptr. set-code-.select Ci);
iic-stat CNtLHYPO-.CHECKED);
// Re-simulate

sim-.set-.up~in...val,in.val-last);
vhdl-.main-.loopo;
load..out-.val~out...al ,out-.val-last);
// Compare outputs
if(sensor-.comp(out...val ,rec-..al,out..yallast)){

if Cis-.flag..set CPRIIL.TRIV)) f
printf("»»)>> Found a Suspect: %s at %d <<<<<<\",

(get-.block-.inst(bi-.ptr.get-.block...ido)) .hyp-str-.get~i))
bi-id

else{
printf("'hs at '/d: Suspect\n",

(get...block-.instC bi-ptr.get..blockido)) .hyp..str-.get(i))
bi-id

inc..stat (IOFAULTS-FOUID);

else{
if Cis..flag..set CPRINT..HYPO)) f

printf ("Ruled out hypothesis 'hd\n",i);

IIClear fault
bi-ptr. set-code~s el ect CO);

--
void diagnose(C

int *in-val,
mnt in-val-last,
mnt *out..yal,
mnt out-val-.last,
mnt *rec-val)

mnt i;
int found-problem = FALSE;

// Set up commands
sim-.set-.up(in-val, in.yal-last);
vhdl-main-loopo;

// Get simulated values
load-out-.val~out-.val ,out-.val-last);

250

if(is-.flag-set(PRINT-l.SIM)){
puts ("Correct operation results:"~);
for~int j0O;j<out-.val-last;++j) f

printfC"%2d: Signal #%2d = 2nj
get-.sensor~j) ,out-val[j]);

1/Check for problems
for(i=O; i<out..val..last;++i){

if(out..val~iJ '=rec..val~iJ){
found-.problem = TRUE;
if Cis-.flag-set CPRIIT-.TRIV)){

printf('We have a problem at sensor #%2d (Signal %03d):%2d !=%2d\n",

i ,get-sensor~i), out..val~iJ ,rec..val [ii);

else f
printf ("###%3d###\L" ,get..sensor~i));

I

if Cis..flag..set CCOLLECT-2))f{
collect-bisuspects-2(get..sensor~i));

else f
collect_bi-suspects~get..sensor(i));

if(is-flag..set(PRINT..SUSP)) {
print-.bi-queueo;

I
while(!bi-queue.isEmptyo)) j

faultify-behave C
C((Integer I)bi-queue.getC)).valueo).
in-.val *in..yal-last,
out-.val,out..val-last,rec-.val)

if(is..flag..setCINSERT..BRK)){
ureak;

/1If no problems found, state so
if C found-problem) (

puts(QNo problems found");

--
void run-.exam~void)

mnt in..yal (MAX-COMMANDS],
out ..val EMAX_.SEISORS],

251

rec..val [MAX_.SENSORS);
int i;
int in-.last =get-last..commando;
int out-.last = get...last..sensorC);

// Get circuit to steady state
sim-.signal-iuito;

if(G...con-f.lag) f
printf("Enter values for the %d command signals:\n",in-last);
for(i=O; i<in..last;++i) f

printf("Command %s: ",get-signal-rec(get-.command(i)) .get-nazae())
scant Qd" ,&Cin-.val~i)));

I

printlC"Enter values for the %/d sensor signaJls:\n",out-.last);
for(i=O; i<out..last;++i) f

printf('Sensor %s: ', get-.signal-rec~get..sensor~i)) .get..nameO);
scanf("%d' ,&Crec-.val[i)));

else f

if Cis-.flag-set (PRIET-.TRIV)) f
puts("Getting commands,sensors");

I or(i=O; i<in~last ;++i) f
iscanf(confile,'%d',&Cin..yal(i)));

printf("Command %s5: Vd\n",get-.signal...rec~get..command(i)) .get..nameC),
in-val[i))

for(iO; i<out-.last; ++i){
fscanf(confile,"%d",&Crec-.val[i)));
if Cis-...lag..set (PRINT-.TRIV)) f

printfC"Sensor %~s: Vd\n' ,get-.signal-rec~get-.seu~sor~i)) .getnzameo).

diagnose(in~val ,in..last ,out-.val,out-.last ,rec..vaJ.);

252

F.8 CODE.HPP
//
//

// CODE .HPP
//

// Code block class
//

// 16 July 1992
--

#ifndef __CODEHPP__
#define __CODEHPP__

#include "mcode.hpp"

#define MAXCODELEI 40 // Max length of op codes
#define MAXCODEBLOCKS 40 // Max number of code blocks

class Code {
public:

Code(void);
Code(int newid);
int get.id(void); // Return ID for code
void add-mcode(MCode new-code); // Add mcode to code object
void execute(int bino); // Execute Code block
void print(char *s); // Print code description

int get.code-blk-len(void); // Return length of code
MCode get-mcode-at(int pos); // Get mcode from code block

private:
int id; // Code id number
MCode code-blk[MAX-CODELEN]; // MCode storage
int last-code-no; // Last MCode

--
// Code block storage management routines

void reset-code.block(void);
void add-code-block(Code knew_code);
Code kget-code-block(int id);
void code-block-print(char *s);
-/ ---

// Execution stack routines

void value-reset(void);
void value.push(int value);
int value.pop(void);

// ---
#endif

253

F. 9 CODE. CPP

//CODE.CPP

1/Code block class

II16 July 1992
/----------- ----------
#include <stdio~h
#include <conio .h>
#include <stdlib .h
*include <assert .h>

#include "code .hpp"
#include <stacks .h>

typedef BI-.StackksVector<iu~t> intStack;

void Code::execute(int bi-.no)

int code-.pc =0; /1mcode PC
int not..done =TRUE;

//printlC"Code: :Execute: Behave #%2d\n' ,bi-no);

value-.reseto;
while Cnot-.done){

not-.done = C(code-.blk~code..pcl))execute Cbino));
code...pc++;

--

typedef BI-StackAsVector<int> intStack;

intStack value-.stack;

/* Clear any remaining values on value stack *
void value-.reset (void)

while(!value..stack.isEmpty())
value-.stack .popoC;

void value-.push(int value)
f

value..stack .push (value);
I
int value-pop~void)

return value-s.tack.popo;

254

//Storage for Code blocks

static Code code-.storage [MAX_.CODE_.BLOCKS);
static int last-code-.block;

void reset-.code-block~void)
f

last-code..block = 0;

void ad&..code-blockC Code knew-.code)

assert Clast-code..block<N4AX-ODE-.BLOCKS);
code.storage[last-code-block++J now-code;

Code &get-.code-block~int id)

for~int i=0; i<last-code-.block; ++i){
if(C code-storage[i).get-ido)= id){

return code-.storage~i);

puts C"''!!!M Bad id in get-code-.block --- code. cpp");
exit(il9);
return code-t.torage [0);

void code-block...print (char *s)

printf Cs);
for~int i0O; i<last-code_block; ++i) f

printfIC"----Code block %2d----\n" ,i);
code-storage[i) .print("");
getchC);

puts(C---------------------

Code: :Code~void)

id = -1;
last..code..no = 0;

255

//--
Code::Code(int newid)
{

id = new-id;
last-code-no = 0;

}

--
int Code::get-id(void)
{

return id;
}

// ---
void Code::add-mcode(MCode newcode)
{

assert(lastcodeno<MAXCODELEN);
code-blk[lastcode.no++] = new-code;

}

/- ---
void Code::print(char *s)
{

printf(s);
printC("For Code-block %2d, MCodes are:\n",id);
for(int i=O;i<last codeno;++i) {

printf("%2dl ",i);
code-blk[i].printo);
puts("t)

I
I

// ---
int Code::get-code-blk-len(void)
{

return last-code-no;
I

// ---
MCode Code::get-mcode-at(int pos)
{

return code.blk[pos];
I

256

F.IO COMSEN.HPP

//
//

II COMSEI.HPP
//

// Handle Command and sensor lists
// 16 jul 92
/I

--

#define MAX-COMNMANDS 20 I/ Max number of commands (system inputs)
#define MAX-SENSORS 20 // Max number of sensors (system outputs)

#define CONMANDSR -1 // Signal is driven by a Command
#define SENSOR-SR -2 I/ Signal drives a sensor
// ---
void reset-commands(void); // Initialize
void addcommand(int signal.id); // Add new command to list
int getcommand(int command-no); // Get command
int get-last-command(void); // Get the last command in the list

void reset-sensors(void); If Initialize
void add.sensor(int signal-id); /I Add new sensor to list
int get-sensor(int sensor-no); /1 Get sensor
int get.last.sensor(void); If Get the last sensor in the list

// ---

257

F. 11 COMSEN. CPP

//
//

// COMSEN.CPP
/-

// Handle Command and sensor lists
// 16 jul 92
//

//----------------------

#include <assert.h>

*include "comsen.hpp"

// ---
/S Storage for Commands

static int commands[MAXCOMMANDS];
static int last-command;

// Storage for sensors

static int sensors[MAXSENSORS];
static int lastsensor;
// ---

void reset-commands(void)
{

last-command = 0;
}
void add-command(int signal-id)
{

assert(lastcommand < MAXCOMMANDS);
commands[last-command++] = signal-id;

}
int getcommand(int command-no)
f

assert((command-no>=O) kk (command-no<last-command));
return commands[command.no];

}
int get.last.command(void)
{

return last-command;
}

// ---

void reset.sensors(void)
{

last-sensor = 0;
}

258

void add-sensor(int sigial-id)

assertC1ast-.sensor < MAX..SENSORS);
sensors (last-sensor++] = signal-.id;

int get...sensor~int sensor-..no)

assert((sensor-.no>=O) && (sensor-.no<last-.sensor));
return sensors [sensor-no);

int get..last..sensor(void)

return last-.sensor;

--

259

F.12 INT.HPP

//

/1 INT.EPP
//

// Integer Class - for IDs
//

// This object puts a shell around an integer. It is required
// so that integers can be used with the Borland container library
//
//

#ifndef __INTHPP__
#define __INTHPP__ 1

#include <object.h>
//

#define IntegerClass 111
class Integer : public Object {
public:

Integer(int new-data = 0) {
data = new-data;

}

int value(void) { return data; }

virtual hashValueType hashValue() const {
return data;

}

virtual int iREqual(const Object& otherObj) const {
return data == ((Integer&) otherObj).data;

}

virtual int isLessThan(const Object& otherObj) const {
return data < ((Integer &) otherObj).data;

I

virtual classType isAC) const {return IntegerClass;}

virtual char *nameOf() const {return "Integer";}

virtual void printOn(ostream& coutt) const {
coutt << "Int: " << data;

}
private:

int data;

//

#endif

260

F.13 MAIN.CPP
//
//

// MAIN.CPP - main function and supporting routines
//
I/ 24 Aug 92
//
/1 This is the - in module of Calvin. This module handles initializing'
// Calvin. The VHDL code is the parsed. Control is then handed
// to the diagnostic modulem CALVIN.CPP.

#define __RAINCPP__

#include <stdio.h>
#include <conio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

#include "thesis.h"
#include "vhdl. hpp"
#include "stat. hpp"

#define ERRSTRLEN 128 // Length of error string argument parsing

//FILE *infile; // input file for source code
//FILE *confi'.e; // input file for commands
//int Gcode; // Code flag for output options

// ---
// PRINTTRIV -
1/ Print out headings,etc.
// PRINTHYPO - T.CPP
I/ "selecting fault condition %d"
I/ "Ruled out hypothesis Ud"
II "For Yd, we have %d bodies"
II PRINT-CONM - UV.LEX
II Print out comments
II PRINTISIM - T.CPP
// print out results from first simulation
II PRINTVH-" - VHDL.CPP
I/ many
II PRINTSUSP - T.CPP
// print list of suspects after collect_bi_suspects()
II INSERTBRK - T.cpp
// break inserted as soon as error found and diagnosed
II COLLECT__2 - T.cpp
// replace collect.bi-suspects() with collect-bi-suspects2()

261

int flags[NAX.FLAG); // System flags set by command line

iut is-flag-set(int flag-no)

f
return(flags~flag-no])

void set..flag~char *flag~str)

for~int i=O;i<MAX..FLAG;++i){

switch(*Cflag..str+i)){

case \:

yyerrorC"Nissing Flag on command line");
exit C99);

case '1':
flags Ci] =1;

break;
case '0':

flags[i) 0;
break;

default:

yyerrorC"Illegal flag on command line");
exit (99);

--
void print-.system..flags(void)

puts("System flag status:");

printfC"PRINtT-TIV: %d\n", flags[PRINT-TRIV])
printfC"PRINT-HYPO: %d\n", flags[PRINT-HYPO))
printf("PRINT-CDNM: %d\n", flags CPRINT...CONNJ)
printf("PRINT-ASIN: 'hd\n", flags[PRINTJ.SIM])
printf C"PRIIT-VHDL: %/d\n", flags [PRIITVHDL])
printf ("PRIIT_.SUSP: %d\n", flags [PRIIT-SUSPJ)
printf("INSERT..BRK: %d\n", flags EINSERT-BRKJ)
printf("COLLECT-_2: %d\n", flags[COLLECT-2))
puts(---"--------------- 0)

/--
void parse..code-flagC mnt argc, char **argv)

char *file-name;
char err-.str[ERR-.S~rRLEI);

if~argc < 2) f
puts ("Usage:");
puts(" CALVIN ffffffff vhdl~file input-file\n");
puts ("where:

puts(,, ffffffff - Calvin flags (0/0)");

262

puts(" vhdl-file - VHDL source code file");
puts(" input-file - Optional input file for in/out values\n");
puts("Flags:");
puts(" 0 - Print trivia");
puts(" I - Print hypotheses");
puts(" 2 - Print commands");
puts(" 3 - Print results of first simulation");
puts(" 4 - Print VHDL");
puts(" S - Print suspects");
puts(" 6 - Insert breakpoint");
puts(" 7 - Use Collection");
exit(111);

}
else {

set-flag(*(argv+l));
}
if (is-flag.set (PRINTTRIV)) {

print.system-flags C);
}

}
// ---

void parse-source-file(int argc, char **argv)
{

char *file-name;
char errstr[ERRSTRLEN];

if(argc < 3) {
puts("Source file not found; using \"ttt\"");
file-name = "ttt";

}
else {

file-name = *(argv+2);
}
if((infile=fopen(filename,"r")) == NULL) {

sprintf(errstr,"Cannot open source file \"'s\"", filename);
yyerror (err-str);
exit(t12);

I
}

void parse.input.file(int argc, char **argv)
{

char *filename;
char errstr[ERRSTR_LEN];

if(argc < 4) {
puts("input file not found; using \"conV'");
file-name = "con";
G_con-flag = TRUE;

263

return;

else{
file-name = *Cargv+3);
G-.con-.flag = FALSE;

if (Cconf ile~fopen~f ile-.name,"r")) NULL){
sprintf~err-.str, "Cannot open source file \"/.s\I"I, file..name);
yyerrorC err...str);
exit(113);

//Determine number of inputs lines to process
if~fscanf~confile,"~d'.&G-no..inputs) 1=) (

yyerrorC"Syntax error while reading confile header");
exit(114);

IIEat CRLF at end of line
fgets(err..str, ERR-STR-.LEI. confile);

--
void main~int argc, char **argv)

puts("VHDL Diagnostic System");
init-simo);
parse-code-flag~argc~argv);
parse-source-file(argc,argv);
parse..input-.file~argc ,argv);
yyparseoC;
if(G...con-.flag){

reset..statso;
run-.exazno;
print..statsoC;
if(is..flag-set(PRINT-TRIV)){

putsC("- ---====ENDOF=RUN===========)

else{
for~int i0O; i<G-nojinputs; ++i){

reset..statso;
run-.examo;
print-statso;
if(is-.flag-setCPRINTTRIV)){

putsC"==== ====END=OF=RUN--------------===")

puts("El Fin.");

--

264

F.14 MCODE.HPP
//
//

// MCODE.HPP
//

// Microcode class
//

// Handle execution of individual mcodes.
// 16 July 1992
//------------------
#ifndef __MCODEHPP__
#define __MCODEHPP__

// ---

#define MAXSTORELEN 20 // Number of temp store locations

// MCodes implemented

#define MNULL -1 // Null opcode
#define MGET -2 // Get signal (signal #)
#define MPOST -3 II Post signal (signal #, value, delta time)
#define MPUSH -4 II Push??
#define MNOT -S // NOT (value)
#define MAND -6 II AND (valuel, value2)
#define MOR -7 // OR (valuel, value2)
#define MXOR -8 1/ XOR (valuel, value2)
#define MEND -9 // End execution
#define MNAND -10 II NAND (valuel, value2)
#define MNOR -11 // NAND (valuel, value2)

#define MPOP -12 1/ Pop (and discard) value on top of stack
#define MSTORE -13 // Store (addr) -- Place TOS in temp store
#define MRETRV -14 1/ Retrieve (addr) -- Place value from store on TOS

class MCode {
public:

MCode(void); /1 Create null microcode
MCode(int ne._op); // Create new microcode
int execute(int bi_no); /1 Execute the opcode
void print(void); II print translation of opcode
int get-op.code(void); // Return mcode op code

private:
int op.code;

--
#endif

265

F.15 MCODE.CPP
//
//

/1 NCODE.CPP
//

// Microcode class
//
// 16 July 1992
//

// This module handle the microcode execution.
//------------------
#include <stdio.h>
*include <conio.h>
#include <stdlib.h>
#include <assert.h>

#include "mcode.hpp"
#include "code.hpp"
#include "behave.hpp"
#include "signal.hpp"
#include "vhdl.hpp"
// ---
int exec-null(void);
int execget(int bi_no);
int exec-post(int bi.no);
int exec-push(void);
int exec-not(void);
int exec-and2(void);
int exec-or2(void);
int exec-xor2(void);
int exec-end(void);
int exec-pop(void);
int exec-store(void);
int-exec-retrieve(void);
// ---
// Temp store for values during code execution
int G-store[KAXSTORELEN];

// ---
MCode::MCode(void)
{

op-code = MNULL;
}
/--
MCode::MCode(int new.op)
{

op-code = ne._op;

--
MCode::get.op.code(void)
{

266

return opcode;

//-

int MCode::execute(int bi-no)

// printf ("Executing for bi#%2d: ",bi.no);
// printo;
// puts("") ;
switch(op-code) {
case MNULL:

return exec.null();
case MGET:

return exec-get(bi-no);
case MPOST:

return exec.post(bi-no);
case MPUSH:

return exec-pusho);
case MNOT:

return exec-noto;
case MAND:

return exec-and2();
case MOR:

return exec-or2();
case MXOR:

return exec-xor2();
case MEND:

return exec-end();
case MPOP:

return exec-popC);
case MSTORE:

return exec-storeC);
case MRETRV:

return exec-retrieveo;
default:

if(op-code >=) {
value-push(op-code);
return TRUE;

}
else {

printf("***** Illegal opcode %2d !!!!!\n",op.code);
exit(122);

return FALSE;

--
void MCode::print(void)

switch(op-code) {
case MNULL:

printf("M_NULL");

267

break;

case MGET:
printf ("MGET");
break;

case NPOST:
print f("M_POST");
break;

case MPUSH:
printf ("MPUSH");
break;

case MNOT:
printf ("'_NOT");
break;

case MAND:
printf ("MAND)9;
break;

case MOR:
prints ("MOR");
break;

case NXOR:
print f("MXOR");
break;

case MEND:
printf ("MEND");
break;

case FPOP:
print f("M_POP");
break;

case MSTORE:
printf ("MSTORE");
break;

case MRETRV:
printf ("MRETRV");
break;

default:
i•(op.code >= 0) {

printf!("Value: %2d",opcode);

}
else {

printf ("*Unknown*");
}

}
}

//-- ---
//-- ---
int exec-null(void)
{

return TRUE;
}

int exec-get(int bi.no)

268

Behave kbi-ptr = get-.behave-inst(bi-no);
jut signal-offset =value-.popC);
jut sigual-id = bi-ptr.get-.input(signal-ofiset);
Signallecord ksr-.ptr =get-.signal-.rec(signal~id);
int value = sr-.ptr.get-.cval();
value-.push~value);
return TRUE;

jut exec-.post~iut bi-uc)

int time-..offset = value-.popo;
jut value = value-popO);
int signal-.offset =value-.popo;
Behave kbi-.ptr = get-.behave..inst~bi-.no);
jut signal-.id = bi-.ptr.get-.output(signal-olfset);
Signali~ecord ksr..ptr = get-.signal-rec(signal,..id);
post-.sigual(get-.current-timeo)+timie-.offset ,sr-ptr .get-.id(),value);
return TRUE;

int exec-.push~void)

putsC'H!'' UNIMPLEMENTED OP CODE IN NCODE");
return FALSE;

jut exec-n.ot (void)

jut value = value-.popo;
value-pushC !value);
return TRUE;

jut exec-.and2Cvoid)

jut valuel =value-.popo;
jut value2 =value..popC);
value..push~valuel & value2);
return TRUE;

jut exec-.or2 (void)

jut valuel =value-.popo;
jut value2 =value-popo;
value..push(valuel I value2);
return TRUE;

jut exec-.xor2Cvoid)

jut valuel =value-popo;
jut value2 =value-popo);
jut value3 = ((valuel & !value2) I (!valuel A value2));
value-push(value3);
return TRUE;

269

}

int exec-end(void)
f

return FALSE;
}

int exec.pop(void)
{

value.popo;
return TRUE;

}

int exec-store(void)

int addr = value-popo;
assert(addr >= 0 Uk addr < MAXSTORELEN);
G-store[addr] = value-popo);
return TRUE;

int exec.retrieve(void)

int addr = value-popC);
assert(addr >= 0 Uk addr < MAXSTORELEN);

valuepush(G-store[addrJ);
return TRUE;

--

270

F.16 SIGNAL. HPP
I,
//

// SIGNAL.HPP
//

// Signal Record Class
//
// 16 July 1992

#define MAXNAMESIZE 10 // Max size of name
#define MAXCONNS 10 // Max number of behaves the signal can drive

#define MAXSIGNAL-REC 60 1/ Max number of signals in simulation

class SignalRecord {
public:

SignalRecord(void);
SignalRecord(

int new.id,
char *new-name,
int driver-bi-no);

get-id(void); // Get id of signal
void print(char *s); // Print signal description
void add-corns(I/ Add connection to signal

int conns-id);
void getconns(// Get a Behave object connected to signal

int *last-cornnno,
int **conn-list);

void set-cval(int newval);// Set signal value

int get.cval(void); // Get signal's value
int get.driver.bi(void); // Get ID of Behave object that drives this

// signal
void set-driver-bi(// Set driver Behave object for this signal.

int new-driver);
char *get-name(void); // Return character name of this signal

private:
int id; // Integer name
char name[MAXIAMESIZE]; // Character name
int cval; // Value of signal
int conns[NAXCONIS]; // List of connections to signal (BI inputs)
int last-conn; // Last added conn + 1
int driver-bi; // Which bi# drivers this signal

II Signal record storage management routines

void reset-signal-rec(void);
void add-signal-rec(SignalRecord knew-signal);

271

void mod-.signal-recC Signaiftecord &mod-signal);
Signallecord &get..signal-rec~int id);
void signal-rec-print(char *s);

272

F.17 SIGNAL.CPP

//
//

// SIGNAL.HPP
//

// Signal Record Class
I,

// 16 July 1992
//

// This module defines routines for the signal class
//------------------

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "signal.hpp"
/--
I/ Storage for signal instance

static SignalRecord signal-storage[MAXSIGNALREC];
static int last.signal-inst;

// ---
void reset-signal-rec(void)

last-signal-inst = 0;
}
- --

void add-signal-rec(SignalRecord &new-signal)
{

assert(last.signal.inst<NAXSIGNAL.REC);
signal-storage[last-signal-inst++] = new-signal;

}
-/ ---

void mod-signal-rec(SignalRecord &mod-signal)
{

for(int i=O; i<last.signal.inst; ++i) {
if(signal-storage[il.getido) == mod-signal.get.ido)) {

signal-storage[i] = mod-signal;
return;

}
}
puts("!!!!!! Bad id in mod-signal-rec---signal.cpp");
exit(120);

SignalRecord &get-signal-rec(int id)
{

273

for(int i=O; i<last.signal-inst; ++i) {
if(signal.storagefi).get.ido) == id) {

return signal-storage[i];
}

}
puts("'!!!!!! Bad id in get-signal.rec---signal.cpp");
exit(121);
return signal-storage[O]; // Get rid of "Need return" warning

}
--

void signal-rec.print(char *s)
{

printf(s);
for(int i=O; i<last-signal-inst; ++i) {

printf("Signal %2d: %03d ==> %d\n",i,
signal-storage[i].get-idC),
signal-storage[i].get-cval());

}
puts(" -----------------------);

}

SignalRecord::SignalRecord(void)
{

id
strcpy(name,"ANON");
driver-bi = -1;
lastconn = 0;
cval = 0;

}

// ---
SignalRecord::SignalRecord(

int newid,
char *new-name,
int driver-bi-no)

id = new-id;
strncpy(namene._name,MAXNANESIZE);
name[MAXNAMESIZE] = 1\01;
driver-bi = driver-bi-no;
last-conn = 0;
cval = 0;

}
// ---
int SignalRecord::get-id(void)
{

return id;
}

--
void SignalRecord::print(char *s)
{

printf(s);

274

printf("Name: %lOs (%2d) Driver: %2d Value: %2d\n",

name, id,driver.bi ,cval);
puts("Connected to:");
for(int i=O;i<last conn;++i) {

printf("%2d1 -- > %2d\n", i,conns [i]);
}

}

/ --
char * SignalRecord::get-name(void)
{

return name;
}
-/ ---

void SignalRecord. :add-conns(int conns-id)
{

assert(last-conn<MAXCONNS

conns[last-conn++] = conns-id;
}
-/ ---

void SignalRecord: :get-conns(int *last-conn-no, it t **connlist)
{

*last-connmno = last-conn;

*corm-list = conns;
}
- --

void SignalRecord: :set-cval(int newval)

cval = new-val;
}
// ---
int SignalRecord: :get-cval(void)
{

Seturn cval;
}

- --
int SignalRecord: :getdriverbi(void)
{

return driverbi;
}
// ---
void SignalRecord: :set-driver-bi(int new-driver)

driver-bi = new-driver;
2

275

F.18 STAT.HPP
//
//

// STAT.HPP - Statistic collection routines
//
// 26 Aug 92
//
//----------------------
//
// Available statistics
#define NO-SUSPECTS 0
#define NOHYPOCHECKED 1
#define NOFAULTSFOUND 2
#define NOPOSTSIG 3
#define NO-UPDATE 4
#define NOVHDLSIM 5

#define MAXSTAT 6

void reset-stats(void);
void incstat(int statjname);
void print.stats(void);

276

F.19 STAT.CPP

//STAT.CPP - Statistic collection routines

II26 Aug 92

*incuesdo
*include <stdio .h>

include "thesis. h"

*include "stat .hpp"

// collection variables
static int stats[NAI..STAT);

// Reset stat variables
void reset-.stats(void)

foar(mt i0O; i<NAXSTAT; ++i){
stats~i] = 0;

IIincrement stat variable
void inc..stat(int stat~name)

stats Estat-nameJ ++;

IIprint stats
void print-.stats~void)

if Cis-.flag-.setCPRIIT_.TRIV)){
puts C" ------------- Statistics -------------
printi ("Number of suspects generated----%3d\n", stats EN0..SUSPECTS));
printfC"Iumber of hypotheses checked ------%3d\n", stats ENO-HYPO-.CHECKEDJ);
printfC"Number of faults found ------ %3d\n", stats EIO..FAULTS-.FOUNID);
printf ("lumber of posted signals ----- %3d\n", stats[NO-.POST-.SIG));
printf ("lumber of behave updates ---------- %3d\n", stats ENO..UPDATE));
printf("lumber of simulations done -------- %UAWn" stats [lO!HDL-.SIM));
puts C" ------------------------------------ t)

else{
putsI ----"0);
printf("%3d supcsn, stats CIO-.SUSPECTSJ);
printfC"%3d #hypos\n", stats (N0..HYPO-.CHECKED));
printfC"%3d Salsn, stats [N0..FAULTS-.FOUNID);
printfC"%3d #Posts\n", stats [IO-POST-.SIG));

277

printf('%3d #updates\n", stats [NO..UPDATE));
printf(C%3d #sims\n", stats [NO3BDL-SIKJ);

278

F. O THESIS.H
/*

VHDL PARSER

File: THESIS.H

Date: 2 July 1992

Catch-all file for all modules

*/

/*--*
#ifndef __THESISB__
#define __THESISH__

#define CURRENT-LIST (void *)I
#define ERROR -32767
#define TRUE i
#define FALSE 0

// Code title describing correctly operating code blocks
#define CORRECTCODETITLE "Correct operation"

// Maximum interface parameters for Behave objects
#define MAX-IN 10 // Maximum number of inputs
#define MAX-OUT 10 // Maximum number of outputs
/* ---
int yyerror(char *s);
int yylex(void);
int yyparse(void);

void run.exam(void);
int is-flagset(int flag-no);

//void *allocao);
/ -- *1
// System flags

#define PRINTTRIV 0 II Print out headings,etc.
#define PRINTHYPO I/ Print out hypothesis numbers
#define PRINT-COMM 2 // Print comment lines during parse
#define PRINTISIM 3 // Print out Ist simulation resuts (correct operation)
#define PRINT_VHDL 4 // Print out VHDL output during simulation
#define PRINTSUSP 6 // Print possible-suspect-list
#define INSERTBRK 6 // Insert break after one error found
#define COLLECT__2 7 // Use 2nd collect-hibsuspects()

#define MAX-FLAG 8

/* ---*
// Global variables

279

#include <stdio.h>
#ifdef __JAINCPP__
FILE *infile; // input file for source code
FILE *confile; // input file for commands
int G.code; /I Code flag for output options
int G-con-flag; II Flag to indicate commands come from console
int G-no.inputs;// Number of command lines to process
#else
extern FILE *infile; II input file for source code
extern FILE *confile; II input file for commands
extern int G.code; II Code flag for output options
extern int G-con-flag; /1 Flag to indicate commands come from console
extern int G.no.inputs;// Number of command lines to process
#endif
/* -- *
#endif

280

F.21 VHDL.IIPP
//
//

I/ VHDL.HPP
//

// VHDL simulator code
//

// 17 July 1992
//

// Header file for VHDL simulator module
//------------------
#ifndef __VHDLHPP__
#define __VHDLHPP__
// ---
#define OK 0
#define QUEUE-END 1
// --
void initsim(void); // Init simulator
void update.behave(// Simulate a behavior object

int &behave-id,
void *args);

void post.signal(// Post an activation record to the queue.
int time, // This function called during behave object
int signal.id, // simulation
int new-val);

int get.top.time(void); II Get time of next event in the queue
int getcurrenttime(void);// Get the current simulation time
int process.low.time(void);// Process all activation records with the

II current simulation time
int process.init(void); II Execute each behavior object once in

II order to start the simulation object
vhdl_main_loop(void); // VHDL main loop - called to run the

I/ VHDL simulation
// --
#endif

281

F. 22 VHDL. CPP
//
//

// VHDL.CPP
//

// VHDL simulator code
//

// 17 July 1992
//------------------
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#include <sets.h>

#include "signal .hpp"
#include "behave.hpp"
#include "block.hpp"
#include "code.hpp"

#include "ar.hpp"
#include "vhdl.hpp"
#include "stat.hpp"
#include "queue.hpp"

typedef BISetAsVector<int> IntSet;
// --
static int current-time;
// --
void init-sim(void)
{

current-time = 0;
reset-behave-instC);
reset.signal-rec();
reset-code-blocko;
reset-block-insto;

static void update-behave(int kbehaveid, void *args)
{

inc-stat(NOUPDATE);

if(is-flag.set(PRINTVHDL)) {
printf("Updating behave %03d\n",behaveid);

}

I/ Get behavior instance to update
Behave kbi = get.behave-inst(behave-id);

// Get proper code block for behavior
block &block.ptr = getblockinst(bi.getblock-ido);

282

Code &code-ptr = -et- code-block(block-ptr.get -code(bi.get _current-select()));
// And execute it
code.ptr.execute(behave-id);
// Get rid of Borland warning (do nothing)
((int*)Cargs))++;

}
// --- ---
void post-signal(

int time,
int signal-id,
int new-val)

incstat(NO_POSTSIG);
if(is-flag-set(PRINTVHDL)) {

printf ("Posting signal %03d: new value=%d at %d\n",
signal_id,new.val,time);

}
ActiveRecord new.ar ActiveRecord(time,signal-id,new.val);
put-queue(new.a±);

--
int get-top.time(void)
{

if(empty-queueo)) {
return QUEUE-END;

}
ActiveRecord front-ar = front-queueo;
return front.ar.get-timeo;

}

-- ---
int get-current.time(void)
{

return current-time;
}

--
int process.low.time(void)
{

IntSet behav.set;
int *conns-ptr;
int last-conn-no;
int new-time;

if((newtime=get-top-timeo) == QUEUE-END) {
return QUEUE-END;

}
if(is-flag-set(PRINTVHDL)) {

printf("The new time iz Wd\n", new.time);

283

while(neu..time == get-.top-.time()){
ActiveRecord next-.ar = get~queueC);
SignaiRecord ksr..ptr =get-.signal-rec~next...ar.get-.sr-.ptr())

if~sr-.ptr.get-.cvalC) != next-.ar.get-.value())
sr-.ptr.set..cvalC next-.ax.get-.value())
if(is-f.lag-.setCPRIIT-.VEDL)) (

printf("Signal %03d: <-- X/d\n', sr-.ptr.get-.ido. sr-.ptr.get..cval())
I
// Collect conns into one container
sr...ptr.get...conns(klast-.conn-.no, tconns-.ptr);
for~int i0O;i<last-conn-.no;++i){

it(is-.flag-.set(PRINT-VHDL)){
printf(QVill update %03d\n" ,conns..ptr Li));

I
behav-.set .add(coans-.ptr Li]);

//Update master time
current-.time =new-.time;

behav-.set.forEachC *update..behave, ")

return OK;

--
int process..init(void)

int behave..id-.no;

for(mnt i0O; i<get..last..behave-jinsto); ++i){
behave-.id..no = get-.behave-id-.at(i);
updat e-.behave (behave..id-.no, "');

return OK;

--
vhdl..main-.loop Cvoid)

mnt not-.done = TRUE;
mnt result;

inc-stat(lO-.VHDL-SIM);
while(not-.done){

switch~process-low-.timeo))
case OK:

break;
case QUEUE-.END:

not..done = FALSE;

284

break;
default:

puts("! ! '!Error in VHDLNAIILOOP)");
exit (110);

return OK;

285

Appendix G. Verification of Example VHDL Source Code

G. I Introduction

The example source files in Appendix B were verified using the Zycad VHDL system. Because

of some limitations in Calvin's VHDL simulator, some modifications were made. These include:

"* Libraries were not implemented in Calvin. The "work." and references to Lhe "work" library

were added.

"* Sensitivity lists were not implemented. These lists were added to the process statements.

"* Specific time units were not implemented. In Calvin, the times specified in the after clauses

do not have any units. The unit "ns" was added for the Zycad runs.

"* At this time Calvin does not allow signal assignments in the structural descriptions. In some

of the circuits internal signals need to be brought out as outputs. Calvin allows the signals

in the parameter lists to be used as internal signals. Since this is not allowed by the VHDL

standard, new signals were created for the Zycad runs. These can be identified by the letter

'o' at the end of the identifier (as in i710o).

In this appendix are the modified source files. These were followed by the signal values as

reported by Zycad. For the full-adder, ALU without probes, and ALU with probes, the inputs are

the same as the those in the figures in section 4.1.1.

286

G.2 Zycad Source Files

G.2.1 Full-Adder

-- One-bit full-adder

-- Consists of 2 half-adders and an OR gate

-- X + Y + Cin = Z + Cout

-- This full-adder is used in the four-bit adder

--------OR Gate---------
entity iO5 is
port(

i011: in Bit;
i012: in bit;
i013: out bit

end;

architecture i025 of i01S is
begin

process (iOll, i012)
begin

i013 <= iO01 or i012 after S ns;
end process;

end i025;

------.Half adder--------
entity iOlO is
port (

i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end;

architecture i020 of iOlO is
begin

process (i011,i012)
begin

i013 <= iO01 xor i012 after S ns;
i014 <= i011 and i012 after S ns;

end process;
end i020;

------.Full Adder--------

287

entity iOSO is
port(

iOS,i052,i053:in bit;
iOS4,iOSS:out bit

end iASO;

architecture i060 of iASO is

signal i090:bit;
signal i091:bit;
signal i092:bit;
component i01O

port(
iAl: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end component;
component i030

port(
iOll,iO12:in bit;
i013:out bit

end component;

begin
i080:iOlO

port map(
iAl => iOS1,
i012 => i052,
i013 => i090,
i014 => i091);

i081:iO0O
port map(

iAl => i090,
i012 => i053,
i013 => i054,

i014 => i092);
i082:i030

port map(

iAl => i091,
i012 => i092,
i013 => i0S5);

end;

-------.Circuit----------
configuration i099 of iOO is

288

for i060
for i080,i081:iO0O use entity work.iOlOi(020);
end for;

for i082:i030 use entity work.i015Ci025);

end for;

end for;

end;

289

G.2.2 ALU without Probes

-- Three-bit, Two-operation ALU
-- Performs AID or OR function of 2 three-bit values

-- If S=1, A2A1AO AND B2BIBO = Z2Z1ZO
-- If S=O, A2A1AO OR B2B1BO = Z2Z1ZO

-- This example has the probes inserted at the outputs
-- of the AID/OR functions commented out.

library work;
-------- OR Gate---------

entity i200 is
port(

i201: in Bit;
i202: in bit;
i203: out bit

end;
architecture i299 of i200 is
begin

process (i201,i202)
begin

i203 <= i201 or i202 after 5 ns;
end process;

end;

-------- AID Gate---------
entity i100 is
port(

ilOl: in Bit;
i102: in bit;
i103: out bit

end;
architecture i199 of i100 is
begin

process (i101,i102)
begin

i103 <= i101 and i102 after 5 ns;
end process;

end;

-------- INVGate---------
entity i300 is
port(

i301: in Bit;
i302: out bit

290

end;
architecture i399 of i300 is
begin

process (i301)
begin

i302 <= not i301 after 5 ns;
end process;

end;

entity iS00 is
port(

iSO in bit; -- A
isll in bit; -- A
i512 in bit; -- A
i520 in bit; -- B
i521 in bit; -- B
i522 : in bit; -- B
i595 : in bit; -- sO
i530 : out bit; -- Z
i531 : out bit; -- Z
i532 : out bit -- Z

-- The following are the commented-out probes

-- i710 out bit; -- YOAND
-- i711 out bit; -- YIAND
-- i712 out bit; -- YIAND
-- i81O out bit; -- YOOR
-- i811 out bit; -- YIOR
-- i812 out bit -- YIOR

end iSO0;

architecture i599 of iSO0 is

component i100
port(i101,

i102 : In Bit;
i103 : out Bit);

end component;

component i200

port(i201,
i202 In Bit;
i203 out Bit);

end component;

component i300
port(i301 In Bit;

291

i302 Out Bit);
end component;

signal
iO00,
iOOi,i003,i004,
iO1,iu013,i014,
i021,i023,i024

bit;

-- The commented-out probes have been replaced by
-- these internal signals

signal i710,i711,i712 bit;
signal i810,i811,i812 bit;

begin
-- Control line inverter

i606: i300 port map(i301=>i595, i302=>iOOO);

-- Bit 0
i601: i100 port map(i101=>iS10, i102=>i520, i103=>i710);
i602: i200 port map(i201=>iS1O, i202=>i520, i203=>i810);
i603: i100 port map(i101=>i710, i102=>i0OO, i103=>i003);
i604: i100 port map(i101=>i810, i102=>i595, i103=>i004);
i60S: i200 port map(i201=>i003, i202=>i004, i203=>i530);

-- Bit 1
i611: i100 port map(i101=>iS11, i102=>i521, i103=>i711);
i612: i200 port map(i201=>i511, i202=>i521, i203=>i811);
i613: i100 port map(i101=>i711, i102=>iOOO, i103=>i013);
i614: i100 port map(i101=>i811, i102=>i595, i103=>i014);
i615: i200 port map(i201=>i013, i202=>i014, i203=>i531);

-- Bit 2
i621: i100 port map(i101=>i512, i102=>i522, i103=>i712);
i622: i200 port map(i201=>i512, i202=>i522, i203=>i812);
i623: i100 port map(i101=>i712, i102=>iOOO, i103=>i023);
i624: i100 port map(i101=>i812, i102=>i595, i103=>i024);
i625: i200 port map(i201=>i023, i202=>i024, i203=>i532);

end;

-------.Circuit----------
configuration iOOO of iSOO is

for i599
-- AND gates
for i601,i603,i604:iOO use entity work.ilO0(i199);

end for;

292

for i611,i613,i614:i100 use entity work.i100(i199);
end for;

for i621,i623,i624:iOO use entity work.ilOO(i199);
end for;

-- OR gates
for i602,i605:i200 use entity work.i200(i299);
end for;

for i612,i615:i200 use entity work.i200(i299);
end for;

for i622,i625:i200 use entity work.i200(i299);
end for;

-- INV gates
for i606:i300 use entity work.i300(i399);
end for;

end for;
end;

293

G. 2.3 ALU with Probes

-- Three-bit, Two-operation ALU
-- Performs AND or OR function of 2 three-bit values

-- If S=1, A2A1AO AND B2BtBO = Z2Z1ZO
-- If S=O, A2A1AO OR B2B1BO = Z2Z1ZO

-- This example has the probes inserted at the outputs
-- of the AND/OR functions. These bring the results of both
-- functions to sensors.

library work;

-------- OR Gate---------
entity i200 is
port(

i201: in Bit;
i202: in bit;
i203: out bit

end;
architecture i299 of i200 is
begin

process (i201,i202)
begin

i203 <= i201 or i202 after 5 ns;
end process;

end;

-------- AND Gate---------
entity ilO0 is
port(

ilOl: in Bit;
i102: in bit;
i103: out bit

end;
architecture i199 of i1OO is
begin

process (i101,i102)
begin

i103 <= i101 and i102 after 5 us;
end process;

end;

-------- INVGate---------
entity i300 is
port(

294

i301: in Bit;
i302: out bit

end;
architecture i399 of i300 is
begin

process Ui301)
begin

i302 <= not i301 after 5 ns;

end process;
end;

entity i500 is
port(

iS1O in bit; -- A
i611 in bit; -- A
i512 in bit; -- A
i520 in bit; -- B
i521 in bit; -- B
iS22 in bit; -- B
i595 in bit; -- sO
i530 out bit; -- Z
i531 out bit; -- Z
i532 out bit; -- Z

-- These output signals are the probes

i710 : out bit; -- YOAND
i711 : out bit; -- YIAID
i712 : out bit; -- YIAND
i810 : out bit; -- YOOR
i811 : out bit; -- YIOR
i812 : out bit -- YIOR

end i500;

architecture i599 of i500 is

component iiO0
port(ilOl,

i102 In Bit;
i103 out Bit);

end component;

component i200
port(i201,

i202 In Bit;
i203 out Bit);

end component;

295

component i300
port(i301 : In Bit;

i302 Out Bit);
end component;

signal
iO00,
OO, i003,i004,

i011,i013,i014,
i021,i023,i024
: bit;

signal i710o,i7llo,i712o,i8lOo,i8llo,i812o bit;

begin
-- Control line inverter

i606: i300 port map(i301=>i595, i302=>i000);

-- Bit 0
i601: i100 port map(i101=>i510, i102=>i520, i103=>i7l1o);
i602: i200 port map(i201=>i510, i202=>i520, i203=>i810o);
i603: i100 port map(i1O=>i710o, i102=>i000, i103=>i003);
i604: i10O port map(i101=>i8l0o, i102=>i595, i103=>i004);
i605: i200 port map(i201=>i003, i202=>i004, i203=>i530);

-- Bit 1

i611: i1O0 port map(i101=>i511, i102=>i521, i103=>i7llo);
i612: i200 port map(i201=>i511, i202=>i521, i203=>i811o);
i613: i1OO port map(i101=>i711o, i102=>i000, i103=>i013);
i614: iOO port map(i101=>i811o, i102=>i595, i103=>i014);
i61i: i200 port map(i201=>i013, i202=>i014, i203=>i531);

-- Bit 2

i621: i100 port map(i101=>i512, il02=>i522, i103=>i712o);
i622: i200 port map(i201=>i512, i202=>i522, i203=>i812o);
i623: i100 port map(i101=>i712o, i102=>iOOO, i103=>i023);
i624: i100 port map(i101=>i812o, i102=>i595, i103=>i024);
i625: i200 port map(i201=>i023, i202=>i024, i203=>i532);

i710 <= i7Oo;
i711 <= i711o;
i712 <= i712o;
i810 <= i810o;
i811 <= i811o;
i812 <= i812o;

end;

-------.Circuit----------
configuration iO00 of i500 is

for i599
-- AND gates

296

for i601,i603,i604:il00 use entity work.ilOO0(l99);
end for;

for i611,i613,i614:iOO use entity work.ilO0(i199);
end for;

for i621,i623,i624:iIOO use entity work.ilO0(i199);
end for;

-- OR gates

for i602,i605:i200 use entity work.i200(i299);
end for;

for i612,i61S:i200 use entity work.i200(i299);
end for;

for i622,i62S:i200 use entity work. i200(i299);
end for;

-- INV gates
for i606:i300 use entity work.i300(i399);
end for;

end for;
end;

297

G.2.4 Four-Bit Adder

-- Four-bit Adder

-- Consists of 4 full-adders in cascade

-- X3X2XIXO + Y3Y2Y1YO + Cin = Z3Z2Z1ZO + Cout

-------- OR Gate---------
library work;

entity i015 is
port(

i011: in Bit;
i012: in bit;
i013: out bit

end;

architecture i02S of i015 is
begin

process (iO11,i012)
begin

i013 <= iO11 or i012 after 5 ns;
end process;

end i025;

------.Half adder--------
entity i01 is
port(

i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end;

architecture i020 of i01O is
begin

process (iO1, i012)
begin

i013 <= iO11 xor i012 after S ns;
i014 <= iO01 and i012 after 5 ns;

end process;
end i020;

------.Full Adder--------
entity iOSO is
port(

298

i100 in bit; -- Cin
illo, -- 10
i111, -- Xi

i112, -- 12
i113 : in bit; -- 13
i120. -- YO
i121, -- Y1
i122, -- Y2
i123 in bit; -- Y3
i130, -- ZO
i131, -- Zi
i132, -- Z2
i133 : out bit; -- Z3
i140, -- coutO
i141, -- coutl
i142 out bit; -- cout2
i143 out bit -- Cout

end;

architecture i060 of A050 is

signal i200,i201,i202:bit;
signal i210,i211,i212:bit;
signal i220,i221,i222:bit;
signal i230,i231,i232:bit;

component i010
port(

i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit

end component;
component i030

port(
i011,i012:in bit;
i013:out bit

end component;

signal i140o, i141o, i142o: bit;

begin
-- Bit 0

iSOO:i010
port map(

i011 => i110,
i012 => i120,

299

i013 => i200,
i014 => i201);

i501O:ilO
port map(

iAl => i200,
i012 => ilOO,
i013 => i130,
i014 => i202);

i502:i030
port map(

iO1 => i202,
i012 => i201,
i013 => i140o);

-- Bit I
islO:iOlO

port map(
iAl => ill1 ,
i012 => i121,

i013 => i210,
i014 => i211);

iSl1:iOlO

port map(
iAl => i210,
i012 => i140o,
i013 => i131,
i014 => i212);

i512:i030
port map(

iO1 => i212,
i012 => i211,
i013 => il4lo);

Bit 2
iS20:iOlO

port map(
iO1 => i112,
i012 => i122,
i013 => i220.
i014 => i221);

i521:i01O
port map(

iO1 => i220,
i012 => il4lo,

i013 => i132,
i014 => i222);

300

i522: i030
port map(

iAl => i222,
i012 => i221,
i013 => i142o);

-- Bit 3
i630:iOlO

port map(

iO1 => i113,
i012 => i123,
i013 => i230,
i014 => i231);

i531:1010
port map(

iO1 => i230,
i012 => i142o,
i013 => i133,

i014 => i232);

±532:i030
port map(

iOll => i232,
i012 => i231,
i013 => i143);

i140 <= i140o;
i141 <= i141o;
i142 <= i142o;

end;

-------.Circuit----------
configuration i099 of ASO is

for i060
for iSO0,iS01:i010 use entity work.i01O(i020);

end for;
for i502:i030 use entity work.iO15(i025);
end for;

for iS10,iS11:i010 use entity work.i010(i020);
end for;
for i512:i030 use entity work.iOlS(i025);
end for;

for iS20,i521:iO0O use entity work.i010(i020);
end for;
for i522:i030 use entity work.i015(i025);
end for;

for i530,i531:iO0O use entity work.iOlO(iO2O);

301

end for;
for i532:i030 use entity work.i015(i025);
end for;

end for;
end;

302

G.3 Zy~cad Results

G.3. FULLADD.VHZ

i052 '0'

i053 '0'

i054 '0'

±051 '1'

i052 '0'

i053 '0'

iOSi '0'

i052 '1'

i053 '0'

i054 '1)

i052'1
i053 '0'

i054 to'

i055 '1'

i052 '0'

±053 '1'

i054 '1'

±055 '0'

±05s'1
±052 '0'

±053 ;I)

i054 '0'

±055 '1'

±051 '0'

i052'1

i053'1

±054 '0'

ioss '1'

±051 '11

i052 I1)

±053 '1'

±054 P11

303

3055 '1'

304

G.3.2 ALU. VHZ (wvithout Probes)

i520 'l'

i521 t1)

i512)I,

i522 '1'

i530 'I'

i531'1
±532 1

i520 '0'

iS21 q1

i512 '1'

±522 '1')

i595 '0'

i530 '0'

i531 '1'

i532 '1'

i620 '0'

i521 '1'

i512 '1'

i522 '1'

±530 '1'

i531 '1'

i532 ;I)

±510 '1'

iS20 '0'

±521 '1'

i512 '0'

i522 ' 1'

i530 'I'

i531 '1'

±532 f1'

i510 '1'

i520 '0'

i511 '0'

±521 '1'

305

i512 '0'

i522 P1P

i595 '0'

i530 '0'

i531 '0'

i532 '0'

306

G.3.3 ALUl. VHZ (with Probes)

i595 '0'
i510 '1'

isil '1'

i512 '1'

i520 '1'

i621 '1'

i522 '1'

iS30 '1'

i631 '1'

iS32 '1'
i710 '1'

i810 '1'

i711 P1'
i811 '1'

i712 '1'

i812 1'

i595 '0'
i610 '1'
i511 '1'

i512 '1'

i520 '0'

i521 '1'

i522 'I'
i530 '0'
i531 '1'

i532 '1'

i710 '0'
i810 '1'
i711 '1'
i811 '1'

i712 '1'
i812 '1'
#

i610 'I'
i611 '1'

i512 '1'

i520 O'0
i521 '1'

i522 '1'

i530 '1'

i531 '1'

i532 '1'
i710 '0'

i810 '1'
i711 '1'

i811 '1'
i712 '1'

307

i812 Alp

isgs '
islo I1

isil)0P

i512 '0'

i520 '0'

iS21 A1

i522 'I)

i530 1

i631 1

i532'1
i710 '0'

i810)1)

i711 P0i

All1 '1I'

M72 '0'

i812 I1

is95 '0'

islo '1'

isil '0'

i512 '0'

iS20 '0'

iS21)1,

iS22 '1'

iS30 '0'

iS31 A0'

iS32 '0'

i710 '0'

i8l0 'I'

i7i1 '0'

A~ll '1'

M72 00'

i812 '1'

308

G.3.4 4Add. VHZ

iioo '0'

illo '0'

i 11 1 '0 '

i112 '0'

i113 '0'

i120 '0'

i121 '0'

i122 '0'

i123 '0'

i130 '0'

i131 '0'

i132 '0'

i133 '0'

i140 '0'

i141 '0'

i142 '0'

i143 '0'

i100 '1'
ilo1 '1'

i111 '0'

i112 '0'

i113 '0'

i120 '1'

i121 '0'

i122 '0'

i123 '0'
i130 '1'

i131 '1'

i132 '0'

i133 '0'

i140 '1'

i141 '0'

i142 '0'

i143 '0'

iloo P1

illo'1

i112 '1'

i120 '1'

i121 '0'

i122 '0'

i123 '0'

i130 '1'

i131 '0'

i132 '0'

309

i133 '0'

1140 '1'

1141 '1'

1142 '1'

i143 '1'

i100 '1'
i110 '1'

ill 'I'
i112 '1'
i113 '1'

i120 '1
i121 '1'

i122 '1'

i123 '1q

i130 '1)
±131 '1

i132 1
i133 P1I

1140 1'

1141 '1)

1142 1
i143 1

310

Bibliography

1. Cohen, Kenneth Bruce. Model-Based Reasoning in Electronic Repair. MS thesis,
AFIT/GCE/ENG/90D-08, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1990 (AD-A230503).

2. Cohen, Norman H. Ada as a Second Language. New York: McGraw-Hill Book Company,
1986.

3. Comeau, Ronald C. Parallel Implementation of VHDL Simulations on the Intel iPSC/•2 Hy-
percube. MS thesis, AFIT/GCE/ENG/91D-03, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990 (AD-A243760).

4. Davis, Randall. "Diagnostic Reasoning Based on Structure and Behavior," Artifical Intelli-
gence, 24:347-410 (December 1984).

5. Department of Defense. Requirement 64 - Microelectronic Devices. MIL-STD 454L. Wash-
ington: DOD, 10 September 1987.

6. Dries, Fit Lt Walph W. Model-Based Reasoning in the Detection of Satellite Anomalies. MS
thesis, AFIT/GSO/ENG/90D-03, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990 (AD-A230535).

7. Hamscher, Walter. "Modeling Digital Circuits for Troubleshooting: An Overview." Proceed-
ings of the IEEE 6th Conference on Artificial Intelligence Applications. 2-8. New York: IEEE
Press, 1990.

8. Lin, Dekang and Randy Goebel. "A Minimal Connection Model of Abductive Diagnostic
Reasoning." Proceedings of the IEEE 6th Conference on Artificial Intelligence Applications.
16-22. New York: IEEE Press, 1990.

9. Ng, Hwee Tou. "Model-Based, Multiple Fault Diagnosis of Time-Varying, Continuous Physical
Devices." Proceedings of the IEEE 6th Conference on Artificial Intelligence Applications. 9-15.
New York: IEEE Press, 1990.

10. Perry, Douglas L. VHDL. New York: McGraw-Hill, 1991.

11. Randall Davis, Walter C. Hamscher. "Model-Based Reasoning: Troubleshooting." AI at MIT
1, edited by Sarah A Shellard Patrick H Winston, Cambridge, Mass: MIT Press, 1990.

12. Roger Lipsett, Carl F. Schaefer, Cary Ussery. VHDL: Hardware Description And Design.
Boston: Kluwer Academic Press, 1991.

13. Scarl, E A., et al. "Diagnosis and Sensor Validation Through Knowledge of Structure and
Function," IEEE Transactions on Systems, Man, and Cybernetics, 17:360-369 (May 1987).

14. Skinner, James M. A Diagnostic System Blending Deep and Shallow Reasoning. MS the-
sis, AFIT/GCE/ENG/88D-5, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988 (AD-A202547).

15. Stroustrup, Bjarne. The C++ Programming Language, second edition. New York: Addison-
Wesley, 1991.

311

Vita

David R. Griffin was born in Fort Sam Houston, Texas on August 21, 1965. He graduated

from Brookhaven High School, Brookhaven, Mississippi in May, 1983. He attended Mississippi State

University on a National Merit and ROTC scholarships. He completed a Bachelor of Science in

Electrical Engineering and Computer Engineering. While attending Mississippi State, he joined Tau

Beta Pi. Upon graduation, he was commissioned a second lieutenant in the United States Air Force.

Awaiting his first active-duty assignment, he spent 9 months at the Waterways Experiment Station

in Vicksburg, Mississippi. He was assigned to the 3302 System Support Activity at Keesler AFB,

Mississippi. He was responsible for the developemnent of Merlin, a computer based instructional

system. In 1990 he was granted admission into the School of Engineering, Air Force Institue of

Technology at Wright Patterson AFB, Ohio.

Permanent address: Rt 2 Box 286 B
Bogue Chitto, MS 39629

312

V Eý-A7 N PAC6,F-

December 19

A VHDL Interpreter for Model-Based Diagnoses

David R. Griffin, Captain, USAF

" "" :7 . : "7 ' " ~ ~~~.... :...... °....."• " '.... - "- ,

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/92D-03

Approved for public release; distribution unlimited

Model-based reasoning permits diagnostic applications to be written without waiting for someone to become an
"expert" of the system. For model-based diagnostics, there must be a model to reason from. This thesis explores
using a VHDL description of the system as that model. A system based around a VHDL interpreter was written
specifically for a model-based diagnostic algorithm. Currently, the diagnostic system uses an algorithm by Dries.
This algorithm was derived from Scarl's Full Consistency Algorithm. The system was designed to be modular
so that different diagnostic techniques could be implemented. It is divided into three parts: a VHDL parser, a
VHDL interpreter, and a set of routines to implement Dries' Diagnose algorithm. The system can find stuck-at
faults on combinatorial digital circuits.

VHDL, Diagnostics, Artificial Intelligence

, ,) . 'I ,, -.-'I '- - -" - ; .. , ,,- ,(.u[19 ECOT*)SSi; a[C . . ABSV.T . ABSTRACT
M U>PH ':47 -i PAG• Of ABSTPAr T

TTNCLAS[ATIFIED UNCLASSIFIED UNCLASSIFIED. UL_
-- 4S &- 9

